Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sineq0ALT Structured version   Visualization version   GIF version

Theorem sineq0ALT 38195
Description: A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is http://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 38195. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 24077. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of http://us.metamath.org/other/completeusersproof/sineq0altro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sineq0ALT (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0ALT
StepHypRef Expression
1 pire 24014 . . . . 5 π ∈ ℝ
2 pipos 24016 . . . . 5 0 < π
31, 2elrpii 11711 . . . 4 π ∈ ℝ+
4 2ne0 10990 . . . . . 6 2 ≠ 0
54a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ≠ 0)
6 2cn 10968 . . . . . . 7 2 ∈ ℂ
7 2re 10967 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (2 ∈ ℂ → 2 ∈ ℝ)
96, 8ax-mp 5 . . . . . 6 2 ∈ ℝ
109a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ∈ ℝ)
11 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
1211adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℂ)
136a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 2 ∈ ℂ)
1413, 11mulcld 9939 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
15 ax-icn 9874 . . . . . . . . . . . . . . 15 i ∈ ℂ
1615a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → i ∈ ℂ)
1713, 16, 11mul12d 10124 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = (i · (2 · 𝐴)))
1816, 11mulcld 9939 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
19182timesd 11152 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2017, 19eqtr3d 2646 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2120fveq2d 6107 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
22 efadd 14663 . . . . . . . . . . . 12 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2318, 18, 22syl2anc 691 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2421, 23eqtrd 2644 . . . . . . . . . 10 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2524adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
26 sinval 14691 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
27 id 22 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (sin‘𝐴) = 0)
2826, 27sylan9req 2665 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0)
29 efcl 14652 . . . . . . . . . . . . . . . . . 18 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
3018, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
31 negicn 10161 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -i ∈ ℂ)
3332, 11mulcld 9939 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
34 efcl 14652 . . . . . . . . . . . . . . . . . 18 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3630, 35subcld 10271 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
37 2mulicn 11132 . . . . . . . . . . . . . . . . 17 (2 · i) ∈ ℂ
3837a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
39 2muline0 11133 . . . . . . . . . . . . . . . . 17 (2 · i) ≠ 0
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
4136, 38, 40diveq0ad 10690 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4328, 42mpbid 221 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0)
4430, 35subeq0ad 10281 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4544adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4643, 45mpbid 221 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)))
4746oveq2d 6565 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
48 efadd 14663 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
4918, 33, 48syl2anc 691 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5049adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5147, 50eqtr4d 2647 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))))
5215negidi 10229 . . . . . . . . . . . . . . 15 (i + -i) = 0
5352oveq1i 6559 . . . . . . . . . . . . . 14 ((i + -i) · 𝐴) = (0 · 𝐴)
5416, 32, 11adddird 9944 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
5553, 54syl5reqr 2659 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴))
5611mul02d 10113 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
5755, 56eqtrd 2644 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
5857fveq2d 6107 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
5958adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
60 ef0 14660 . . . . . . . . . . 11 (exp‘0) = 1
6160a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘0) = 1)
6251, 59, 613eqtrd 2648 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1)
6325, 62eqtrd 2644 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = 1)
6463fveq2d 6107 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
65 abs1 13885 . . . . . . 7 (abs‘1) = 1
6664, 65syl6eq 2660 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
67 absefib 14767 . . . . . . . 8 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
6867biimparc 503 . . . . . . 7 (((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈ ℝ)
6968ancoms 468 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈ ℝ)
7014, 66, 69syl2an2r 872 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (2 · 𝐴) ∈ ℝ)
71 mulre 13709 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
72714animp1 37724 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 2 ∈ ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
73724an31 37725 . . . . 5 ((((2 ≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
745, 10, 12, 70, 73eel1111 37968 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
753a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ+)
7674, 75modcld 12536 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
7776recnd 9947 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℂ)
7877sincld 14699 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) ∈ ℂ)
791a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ)
80 0re 9919 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
8180, 1, 2ltleii 10039 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ π
82 gt0ne0 10372 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℝ ∧ 0 < π) → π ≠ 0)
83823adant3 1074 . . . . . . . . . . . . . . . . . . . . . 22 ((π ∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠ 0)
84833com23 1263 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠ 0)
851, 81, 2, 84mp3an 1416 . . . . . . . . . . . . . . . . . . . 20 π ≠ 0
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ≠ 0)
8774, 79, 86redivcld 10732 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
8887flcld 12461 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
8988znegcld 11360 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
90 abssinper 24074 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9190eqcomd 2616 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9291ex 449 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9392adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9489, 93mpd 15 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9588zcnd 11359 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
9695negcld 10258 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℂ)
971recni 9931 . . . . . . . . . . . . . . . . . . . . 21 π ∈ ℂ
9897a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℂ)
9996, 98mulcld 9939 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) ∈ ℂ)
10098, 95mulcld 9939 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
101100negcld 10258 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) ∈ ℂ)
10295, 98mulneg1d 10362 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
10395, 98mulcomd 9940 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((⌊‘(𝐴 / π)) · π) = (π · (⌊‘(𝐴 / π))))
104103negeqd 10154 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -((⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
105102, 104eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
106 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 ((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
107106ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 (((((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
1081074an4132 37726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π)))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
10912, 99, 101, 105, 108eel1111 37968 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
11012, 100negsubd 10277 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
111109, 110eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
112111fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
113112fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11494, 113eqtrd 2644 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
115 modval 12532 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
116115fveq2d 6107 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
117116fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
1183, 117mpan2 703 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11974, 118syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
120114, 119eqtr4d 2647 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod π))))
12127fveq2d 6107 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = (abs‘0))
122 abs0 13873 . . . . . . . . . . . . . . 15 (abs‘0) = 0
123121, 122syl6eq 2660 . . . . . . . . . . . . . 14 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = 0)
124123adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = 0)
125120, 124eqtr3d 2646 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
12678, 125abs00d 14033 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = 0)
127 notnotb 303 . . . . . . . . . . . . 13 ((sin‘(𝐴 mod π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0)
128127bicomi 213 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0)
129 ltne 10013 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠ 0)
130129neneqd 2787 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) = 0)
131130expcom 450 . . . . . . . . . . . . . 14 (0 < (sin‘(𝐴 mod π)) → (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0))
13280, 131mpi 20 . . . . . . . . . . . . 13 (0 < (sin‘(𝐴 mod π)) → ¬ (sin‘(𝐴 mod π)) = 0)
133132con3i 149 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
134128, 133sylbir 224 . . . . . . . . . . 11 ((sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
135126, 134syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (sin‘(𝐴 mod π)))
136 sinq12gt0 24063 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
137135, 136nsyl 134 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (𝐴 mod π) ∈ (0(,)π))
13880rexri 9976 . . . . . . . . . . 11 0 ∈ ℝ*
1391rexri 9976 . . . . . . . . . . 11 π ∈ ℝ*
140 elioo2 12087 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
141138, 139, 140mp2an 704 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
142141notbii 309 . . . . . . . . 9 (¬ (𝐴 mod π) ∈ (0(,)π) ↔ ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
143137, 142sylib 207 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
144 3anan12 1044 . . . . . . . . 9 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
145144notbii 309 . . . . . . . 8 (¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
146143, 145sylib 207 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
147 modlt 12541 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
148147ancoms 468 . . . . . . . . 9 ((π ∈ ℝ+𝐴 ∈ ℝ) → (𝐴 mod π) < π)
1493, 74, 148sylancr 694 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
15076, 149jca 553 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
151 not12an2impnot1 37805 . . . . . . 7 ((¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 < (𝐴 mod π))
152146, 150, 151syl2anc 691 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
153 modge0 12540 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
154153ancoms 468 . . . . . . . 8 ((π ∈ ℝ+𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π))
1553, 74, 154sylancr 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
156 leloe 10003 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
157156biimp3a 1424 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
158157idiALT 37704 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
15980, 76, 155, 158mp3an2i 1421 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
160 pm2.53 387 . . . . . . . 8 ((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
161160imp 444 . . . . . . 7 (((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) ∧ ¬ 0 < (𝐴 mod π)) → 0 = (𝐴 mod π))
162161ancoms 468 . . . . . 6 ((¬ 0 < (𝐴 mod π) ∧ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) → 0 = (𝐴 mod π))
163152, 159, 162syl2anc 691 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
164163eqcomd 2616 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
165 mod0 12537 . . . . . 6 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
166165biimp3a 1424 . . . . 5 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1671663com12 1261 . . . 4 ((π ∈ ℝ+𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1683, 74, 164, 167mp3an2i 1421 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
169168ex 449 . 2 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (𝐴 / π) ∈ ℤ))
17097a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ∈ ℂ)
17185a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ≠ 0)
17211, 170, 171divcan1d 10681 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
173172fveq2d 6107 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
174 id 22 . . . . 5 ((𝐴 / π) ∈ ℤ → (𝐴 / π) ∈ ℤ)
175 sinkpi 24075 . . . . 5 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
176174, 175syl 17 . . . 4 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
177173, 176sylan9req 2665 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
178177ex 449 . 2 (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ → (sin‘𝐴) = 0))
179169, 178impbid 201 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  (,)cioo 12046  cfl 12453   mod cmo 12530  abscabs 13822  expce 14631  sincsin 14633  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator