MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq3sgn Structured version   Visualization version   GIF version

Theorem sincosq3sgn 24056
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 24014 . . 3 π ∈ ℝ
2 3re 10971 . . . 4 3 ∈ ℝ
3 halfpire 24020 . . . 4 (π / 2) ∈ ℝ
42, 3remulcli 9933 . . 3 (3 · (π / 2)) ∈ ℝ
5 rexr 9964 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
6 rexr 9964 . . . 4 ((3 · (π / 2)) ∈ ℝ → (3 · (π / 2)) ∈ ℝ*)
7 elioo2 12087 . . . 4 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
85, 6, 7syl2an 493 . . 3 ((π ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
91, 4, 8mp2an 704 . 2 (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))))
10 pidiv2halves 24023 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1110breq1i 4590 . . . . . . . 8 (((π / 2) + (π / 2)) < 𝐴 ↔ π < 𝐴)
12 ltaddsub 10381 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
133, 3, 12mp3an12 1406 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
1411, 13syl5bbr 273 . . . . . . 7 (𝐴 ∈ ℝ → (π < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
15 ltsubadd 10377 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
163, 1, 15mp3an23 1408 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
17 df-3 10957 . . . . . . . . . . 11 3 = (2 + 1)
1817oveq1i 6559 . . . . . . . . . 10 (3 · (π / 2)) = ((2 + 1) · (π / 2))
19 2cn 10968 . . . . . . . . . . 11 2 ∈ ℂ
20 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
213recni 9931 . . . . . . . . . . 11 (π / 2) ∈ ℂ
2219, 20, 21adddiri 9930 . . . . . . . . . 10 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
231recni 9931 . . . . . . . . . . . 12 π ∈ ℂ
24 2ne0 10990 . . . . . . . . . . . 12 2 ≠ 0
2523, 19, 24divcan2i 10647 . . . . . . . . . . 11 (2 · (π / 2)) = π
2621mulid2i 9922 . . . . . . . . . . 11 (1 · (π / 2)) = (π / 2)
2725, 26oveq12i 6561 . . . . . . . . . 10 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2818, 22, 273eqtrri 2637 . . . . . . . . 9 (π + (π / 2)) = (3 · (π / 2))
2928breq2i 4591 . . . . . . . 8 (𝐴 < (π + (π / 2)) ↔ 𝐴 < (3 · (π / 2)))
3016, 29syl6rbb 276 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < (3 · (π / 2)) ↔ (𝐴 − (π / 2)) < π))
3114, 30anbi12d 743 . . . . . 6 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) ↔ ((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
32 resubcl 10224 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
333, 32mpan2 703 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
34 sincosq2sgn 24055 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) → (0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0))
35 rexr 9964 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
36 elioo2 12087 . . . . . . . . . . 11 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
3735, 5, 36syl2an 493 . . . . . . . . . 10 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
383, 1, 37mp2an 704 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π))
39 ancom 465 . . . . . . . . 9 ((0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4034, 38, 393imtr3i 279 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4133, 40syl3an1 1351 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
42413expib 1260 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4331, 42sylbid 229 . . . . 5 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4433resincld 14712 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
4544lt0neg2d 10477 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4645anbi2d 736 . . . . 5 (𝐴 ∈ ℝ → (((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
4743, 46sylibd 228 . . . 4 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
48 recn 9905 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
49 pncan3 10168 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5021, 48, 49sylancr 694 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5150fveq2d 6107 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
5233recnd 9947 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
53 sinhalfpip 24048 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5452, 53syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5551, 54eqtr3d 2646 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
5655breq1d 4593 . . . . 5 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
5750fveq2d 6107 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
58 coshalfpip 24050 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6057, 59eqtr3d 2646 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
6160breq1d 4593 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
6256, 61anbi12d 743 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
6347, 62sylibrd 248 . . 3 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)))
64633impib 1254 . 2 ((𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
659, 64sylbi 206 1 (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  3c3 10948  (,)cioo 12046  sincsin 14633  cosccos 14634  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  sincosq4sgn  24057
  Copyright terms: Public domain W3C validator