Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sin2h Structured version   Visualization version   GIF version

Theorem sin2h 32569
Description: Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
Assertion
Ref Expression
sin2h (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))

Proof of Theorem sin2h
StepHypRef Expression
1 0re 9919 . . . . . 6 0 ∈ ℝ
2 2re 10967 . . . . . . 7 2 ∈ ℝ
3 pire 24014 . . . . . . 7 π ∈ ℝ
42, 3remulcli 9933 . . . . . 6 (2 · π) ∈ ℝ
5 iccssre 12126 . . . . . 6 ((0 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (0[,](2 · π)) ⊆ ℝ)
61, 4, 5mp2an 704 . . . . 5 (0[,](2 · π)) ⊆ ℝ
76sseli 3564 . . . 4 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℝ)
87rehalfcld 11156 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ ℝ)
98resincld 14712 . 2 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) ∈ ℝ)
10 1re 9918 . . . . . 6 1 ∈ ℝ
11 recoscl 14710 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
12 resubcl 10224 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
1310, 11, 12sylancr 694 . . . . 5 (𝐴 ∈ ℝ → (1 − (cos‘𝐴)) ∈ ℝ)
1413rehalfcld 11156 . . . 4 (𝐴 ∈ ℝ → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
15 cosbnd 14750 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1615simprd 478 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
17 subge0 10420 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
1810, 11, 17sylancr 694 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
19 halfnneg2 11140 . . . . . . 7 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2013, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2118, 20bitr3d 269 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2216, 21mpbid 221 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
2314, 22resqrtcld 14004 . . 3 (𝐴 ∈ ℝ → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
247, 23syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
251, 4elicc2i 12110 . . . 4 (𝐴 ∈ (0[,](2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)))
26 halfnneg2 11140 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
27 2pos 10989 . . . . . . . . . . 11 0 < 2
282, 27pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
29 ledivmul 10778 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
303, 28, 29mp3an23 1408 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
3130bicomd 212 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ (2 · π) ↔ (𝐴 / 2) ≤ π))
3226, 31anbi12d 743 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
33 rehalfcl 11135 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3433rexrd 9968 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
35 0xr 9965 . . . . . . . . 9 0 ∈ ℝ*
363rexri 9976 . . . . . . . . 9 π ∈ ℝ*
37 elicc4 12111 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3835, 36, 37mp3an12 1406 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3934, 38syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
4032, 39bitr4d 270 . . . . . 6 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (𝐴 / 2) ∈ (0[,]π)))
4140biimpd 218 . . . . 5 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π)))
42413impib 1254 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π))
4325, 42sylbi 206 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ (0[,]π))
44 sinq12ge0 24064 . . 3 ((𝐴 / 2) ∈ (0[,]π) → 0 ≤ (sin‘(𝐴 / 2)))
4543, 44syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (sin‘(𝐴 / 2)))
4614, 22sqrtge0d 14007 . . 3 (𝐴 ∈ ℝ → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
477, 46syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
487recnd 9947 . . 3 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℂ)
49 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
50 coscl 14696 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
51 subcl 10159 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
5249, 50, 51sylancr 694 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘𝐴)) ∈ ℂ)
5352halfcld 11154 . . . . 5 (𝐴 ∈ ℂ → ((1 − (cos‘𝐴)) / 2) ∈ ℂ)
5453sqsqrtd 14026 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 − (cos‘𝐴)) / 2))↑2) = ((1 − (cos‘𝐴)) / 2))
55 halfcl 11134 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
56 coscl 14696 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
5756sqcld 12868 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
58 2cn 10968 . . . . . . . . . . . 12 2 ∈ ℂ
59 mulcom 9901 . . . . . . . . . . . 12 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6057, 58, 59sylancl 693 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6160oveq2d 6565 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))))
6258mulid2i 9922 . . . . . . . . . . . 12 (1 · 2) = 2
63 df-2 10956 . . . . . . . . . . . 12 2 = (1 + 1)
6462, 63eqtri 2632 . . . . . . . . . . 11 (1 · 2) = (1 + 1)
6564oveq1i 6559 . . . . . . . . . 10 ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2)))
6661, 65syl6eq 2660 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
67 subdir 10343 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6849, 58, 67mp3an13 1407 . . . . . . . . . 10 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6957, 68syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
70 mulcl 9899 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
7158, 57, 70sylancr 694 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
72 subsub3 10192 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7349, 49, 72mp3an13 1407 . . . . . . . . . 10 ((2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7471, 73syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7566, 69, 743eqtr4d 2654 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
76 sincl 14695 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
7776sqcld 12868 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
7877, 57pncand 10272 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = ((sin‘(𝐴 / 2))↑2))
79 sincossq 14745 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) = 1)
8079oveq1d 6564 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = (1 − ((cos‘(𝐴 / 2))↑2)))
8178, 80eqtr3d 2646 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = (1 − ((cos‘(𝐴 / 2))↑2)))
8281oveq1d 6564 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = ((1 − ((cos‘(𝐴 / 2))↑2)) · 2))
83 cos2t 14747 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8483oveq2d 6565 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8575, 82, 843eqtr4d 2654 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
8655, 85syl 17 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
87 2ne0 10990 . . . . . . . . 9 2 ≠ 0
88 divcan2 10572 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
8958, 87, 88mp3an23 1408 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
9089fveq2d 6107 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
9190oveq2d 6565 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − (cos‘𝐴)))
9286, 91eqtrd 2644 . . . . 5 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘𝐴)))
9392oveq1d 6564 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((1 − (cos‘𝐴)) / 2))
9455sincld 14699 . . . . . 6 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
9594sqcld 12868 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
96 divcan4 10591 . . . . . 6 ((((sin‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9758, 87, 96mp3an23 1408 . . . . 5 (((sin‘(𝐴 / 2))↑2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9895, 97syl 17 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9954, 93, 983eqtr2rd 2651 . . 3 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
10048, 99syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
1019, 24, 45, 47, 100sq11d 12907 1 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  [,]cicc 12049  cexp 12722  csqrt 13821  sincsin 14633  cosccos 14634  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  tan2h  32571
  Copyright terms: Public domain W3C validator