MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin02gt0 Structured version   Visualization version   GIF version

Theorem sin02gt0 14761
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 9965 . . . . . . 7 0 ∈ ℝ*
2 2re 10967 . . . . . . 7 2 ∈ ℝ
3 elioc2 12107 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
41, 2, 3mp2an 704 . . . . . 6 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
5 rehalfcl 11135 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
653ad2ant1 1075 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ)
74, 6sylbi 206 . . . . 5 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℝ)
8 resincl 14709 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
9 recoscl 14710 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
108, 9remulcld 9949 . . . . 5 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
117, 10syl 17 . . . 4 (𝐴 ∈ (0(,]2) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
12 2pos 10989 . . . . . . . . . 10 0 < 2
13 divgt0 10770 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝐴 / 2))
142, 12, 13mpanr12 717 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
15143adant3 1074 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (𝐴 / 2))
162, 12pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
17 lediv1 10767 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
182, 16, 17mp3an23 1408 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
1918biimpa 500 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 / 2))
20 2div2e1 11027 . . . . . . . . . 10 (2 / 2) = 1
2119, 20syl6breq 4624 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
22213adant2 1073 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
236, 15, 223jca 1235 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
24 1re 9918 . . . . . . . 8 1 ∈ ℝ
25 elioc2 12107 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
261, 24, 25mp2an 704 . . . . . . 7 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
2723, 4, 263imtr4i 280 . . . . . 6 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ (0(,]1))
28 sin01gt0 14759 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (sin‘(𝐴 / 2)))
2927, 28syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (sin‘(𝐴 / 2)))
30 cos01gt0 14760 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
3127, 30syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (cos‘(𝐴 / 2)))
32 axmulgt0 9991 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
338, 9, 32syl2anc 691 . . . . . 6 ((𝐴 / 2) ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
347, 33syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
3529, 31, 34mp2and 711 . . . 4 (𝐴 ∈ (0(,]2) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))
36 axmulgt0 9991 . . . . . 6 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
372, 36mpan 702 . . . . 5 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3812, 37mpani 708 . . . 4 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3911, 35, 38sylc 63 . . 3 (𝐴 ∈ (0(,]2) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
407recnd 9947 . . . 4 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℂ)
41 sin2t 14746 . . . 4 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4339, 42breqtrrd 4611 . 2 (𝐴 ∈ (0(,]2) → 0 < (sin‘(2 · (𝐴 / 2))))
444simp1bi 1069 . . . . 5 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℝ)
4544recnd 9947 . . . 4 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℂ)
46 2cn 10968 . . . . 5 2 ∈ ℂ
47 2ne0 10990 . . . . 5 2 ≠ 0
48 divcan2 10572 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
4946, 47, 48mp3an23 1408 . . . 4 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
5045, 49syl 17 . . 3 (𝐴 ∈ (0(,]2) → (2 · (𝐴 / 2)) = 𝐴)
5150fveq2d 6107 . 2 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
5243, 51breqtrd 4609 1 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  (,]cioc 12047  sincsin 14633  cosccos 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640
This theorem is referenced by:  sincos2sgn  14763  pilem2  24010  sinhalfpilem  24019  sincosq1lem  24053
  Copyright terms: Public domain W3C validator