MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp221 Structured version   Visualization version   GIF version

Theorem simp221 1195
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp221 ((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑)

Proof of Theorem simp221
StepHypRef Expression
1 simp21 1087 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant2 1076 1 ((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033
This theorem is referenced by:  4atexlemcnd  34376  cdleme26eALTN  34667  cdleme27a  34673  cdlemk23-3  35208  cdlemk25-3  35210  cdlemk27-3  35213
  Copyright terms: Public domain W3C validator