MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Visualization version   GIF version

Theorem siilem1 27090
Description: Lemma for sii 27093. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
sii1.3 𝑀 = ( −𝑣𝑈)
sii1.4 𝑆 = ( ·𝑠OLD𝑈)
sii1.c 𝐶 ∈ ℂ
sii1.r (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
sii1.z 0 ≤ (𝐶 · (𝐴𝑃𝐵))
Assertion
Ref Expression
siilem1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
2 siii.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
3 siii.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
43phnvi 27055 . . . . . . . . . 10 𝑈 ∈ NrmCVec
5 siii.a . . . . . . . . . . 11 𝐴𝑋
6 sii1.c . . . . . . . . . . . . 13 𝐶 ∈ ℂ
76cjcli 13757 . . . . . . . . . . . 12 (∗‘𝐶) ∈ ℂ
8 siii.b . . . . . . . . . . . 12 𝐵𝑋
9 sii1.4 . . . . . . . . . . . . 13 𝑆 = ( ·𝑠OLD𝑈)
101, 9nvscl 26865 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋) → ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
114, 7, 8, 10mp3an 1416 . . . . . . . . . . 11 ((∗‘𝐶)𝑆𝐵) ∈ 𝑋
12 sii1.3 . . . . . . . . . . . 12 𝑀 = ( −𝑣𝑈)
131, 12nvmcl 26885 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋) → (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋)
144, 5, 11, 13mp3an 1416 . . . . . . . . . 10 (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋
151, 2, 4, 14nvcli 26901 . . . . . . . . 9 (𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵))) ∈ ℝ
1615sqge0i 12813 . . . . . . . 8 0 ≤ ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
1714, 5, 113pm3.2i 1232 . . . . . . . . . 10 ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
18 siii.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
191, 12, 18dipsubdi 27088 . . . . . . . . . 10 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))))
203, 17, 19mp2an 704 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)))
211, 2, 18ipidsq 26949 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2))
224, 14, 21mp2an 704 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
237, 8, 113pm3.2i 1232 . . . . . . . . . . . . . . 15 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
241, 9, 18dipass 27084 . . . . . . . . . . . . . . 15 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))))
253, 23, 24mp2an 704 . . . . . . . . . . . . . 14 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵)))
268, 6, 83pm3.2i 1232 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
271, 9, 18dipassr2 27086 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵)))
283, 26, 27mp2an 704 . . . . . . . . . . . . . . . 16 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵))
291, 2, 18ipidsq 26949 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
304, 8, 29mp2an 704 . . . . . . . . . . . . . . . . 17 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3130oveq2i 6560 . . . . . . . . . . . . . . . 16 (𝐶 · (𝐵𝑃𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3228, 31eqtri 2632 . . . . . . . . . . . . . . 15 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3332oveq2i 6560 . . . . . . . . . . . . . 14 ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3425, 33eqtri 2632 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3534oveq2i 6560 . . . . . . . . . . . 12 ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
3635oveq2i 6560 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
371, 2, 4, 5nvcli 26901 . . . . . . . . . . . . . 14 (𝑁𝐴) ∈ ℝ
3837recni 9931 . . . . . . . . . . . . 13 (𝑁𝐴) ∈ ℂ
3938sqcli 12806 . . . . . . . . . . . 12 ((𝑁𝐴)↑2) ∈ ℂ
401, 18dipcl 26951 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
414, 8, 5, 40mp3an 1416 . . . . . . . . . . . . 13 (𝐵𝑃𝐴) ∈ ℂ
427, 41mulcli 9924 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ
43 sii1.r . . . . . . . . . . . . 13 (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
4443recni 9931 . . . . . . . . . . . 12 (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ
451, 2, 4, 8nvcli 26901 . . . . . . . . . . . . . . . 16 (𝑁𝐵) ∈ ℝ
4645recni 9931 . . . . . . . . . . . . . . 15 (𝑁𝐵) ∈ ℂ
4746sqcli 12806 . . . . . . . . . . . . . 14 ((𝑁𝐵)↑2) ∈ ℂ
486, 47mulcli 9924 . . . . . . . . . . . . 13 (𝐶 · ((𝑁𝐵)↑2)) ∈ ℂ
497, 48mulcli 9924 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ
50 sub4 10205 . . . . . . . . . . . 12 (((((𝑁𝐴)↑2) ∈ ℂ ∧ ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ) ∧ ((𝐶 · (𝐴𝑃𝐵)) ∈ ℂ ∧ ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ)) → ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))))
5139, 42, 44, 49, 50mp4an 705 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
5236, 51eqtri 2632 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
535, 11, 53pm3.2i 1232 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)
541, 12, 18dipsubdir 27087 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)))
553, 53, 54mp2an 704 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴))
561, 2, 18ipidsq 26949 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
574, 5, 56mp2an 704 . . . . . . . . . . . . 13 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
587, 8, 53pm3.2i 1232 . . . . . . . . . . . . . 14 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)
591, 9, 18dipass 27084 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴)))
603, 58, 59mp2an 704 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴))
6157, 60oveq12i 6561 . . . . . . . . . . . 12 ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
6255, 61eqtri 2632 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
635, 11, 113pm3.2i 1232 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
641, 12, 18dipsubdir 27087 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
653, 63, 64mp2an 704 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
665, 6, 83pm3.2i 1232 . . . . . . . . . . . . . 14 (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
671, 9, 18dipassr2 27086 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
683, 66, 67mp2an 704 . . . . . . . . . . . . 13 (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵))
6968oveq1i 6559 . . . . . . . . . . . 12 ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7065, 69eqtri 2632 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7162, 70oveq12i 6561 . . . . . . . . . 10 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
727, 41, 48subdii 10358 . . . . . . . . . . 11 ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
7372oveq2i 6560 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
7452, 71, 733eqtr4i 2642 . . . . . . . . 9 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7520, 22, 743eqtr3i 2640 . . . . . . . 8 ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7616, 75breqtri 4608 . . . . . . 7 0 ≤ ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7741, 48subeq0i 10240 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 ↔ (𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)))
78 oveq2 6557 . . . . . . . . . . 11 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = ((∗‘𝐶) · 0))
797mul01i 10105 . . . . . . . . . . 11 ((∗‘𝐶) · 0) = 0
8078, 79syl6eq 2660 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8177, 80sylbir 224 . . . . . . . . 9 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8281oveq2d 6565 . . . . . . . 8 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0))
8337resqcli 12811 . . . . . . . . . . 11 ((𝑁𝐴)↑2) ∈ ℝ
8483recni 9931 . . . . . . . . . 10 ((𝑁𝐴)↑2) ∈ ℂ
8584, 44subcli 10236 . . . . . . . . 9 (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ∈ ℂ
8685subid1i 10232 . . . . . . . 8 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵)))
8782, 86syl6eq 2660 . . . . . . 7 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8876, 87syl5breq 4620 . . . . . 6 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → 0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8983, 43subge0i 10460 . . . . . 6 (0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ↔ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9088, 89sylib 207 . . . . 5 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9145resqcli 12811 . . . . . . . 8 ((𝑁𝐵)↑2) ∈ ℝ
9245sqge0i 12813 . . . . . . . 8 0 ≤ ((𝑁𝐵)↑2)
9391, 92pm3.2i 470 . . . . . . 7 (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))
9443, 83, 933pm3.2i 1232 . . . . . 6 ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2)))
95 lemul1a 10756 . . . . . 6 ((((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))) ∧ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9694, 95mpan 702 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9790, 96syl 17 . . . 4 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9838, 46sqmuli 12809 . . . 4 (((𝑁𝐴) · (𝑁𝐵))↑2) = (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2))
9997, 98syl6breqr 4625 . . 3 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2))
100 sii1.z . . . . 5 0 ≤ (𝐶 · (𝐴𝑃𝐵))
10143, 91mulge0i 10454 . . . . 5 ((0 ≤ (𝐶 · (𝐴𝑃𝐵)) ∧ 0 ≤ ((𝑁𝐵)↑2)) → 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)))
102100, 92, 101mp2an 704 . . . 4 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))
10337, 45remulcli 9933 . . . . 5 ((𝑁𝐴) · (𝑁𝐵)) ∈ ℝ
104103sqge0i 12813 . . . 4 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)
10543, 91remulcli 9933 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∈ ℝ
106103resqcli 12811 . . . . 5 (((𝑁𝐴) · (𝑁𝐵))↑2) ∈ ℝ
107105, 106sqrtlei 13976 . . . 4 ((0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∧ 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)) → (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2))))
108102, 104, 107mp2an 704 . . 3 (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
10999, 108sylib 207 . 2 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
1101, 18dipcl 26951 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
1114, 5, 8, 110mp3an 1416 . . . . . 6 (𝐴𝑃𝐵) ∈ ℂ
1126, 111mulcomi 9925 . . . . 5 (𝐶 · (𝐴𝑃𝐵)) = ((𝐴𝑃𝐵) · 𝐶)
113112oveq1i 6559 . . . 4 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2))
11491recni 9931 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
115111, 6, 114mulassi 9928 . . . 4 (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
116113, 115eqtri 2632 . . 3 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
117116fveq2i 6106 . 2 (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) = (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))))
1181, 2nvge0 26912 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
1194, 5, 118mp2an 704 . . . 4 0 ≤ (𝑁𝐴)
1201, 2nvge0 26912 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
1214, 8, 120mp2an 704 . . . 4 0 ≤ (𝑁𝐵)
12237, 45mulge0i 10454 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
123119, 121, 122mp2an 704 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
124103sqrtsqi 13962 . . 3 (0 ≤ ((𝑁𝐴) · (𝑁𝐵)) → (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵)))
125123, 124ax-mp 5 . 2 (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵))
126109, 117, 1253brtr3g 4616 1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cle 9954  cmin 10145  2c2 10947  cexp 12722  ccj 13684  csqrt 13821  NrmCVeccnv 26823  BaseSetcba 26825   ·𝑠OLD cns 26826  𝑣 cnsb 26828  normCVcnmcv 26829  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ph 27052
This theorem is referenced by:  siilem2  27091
  Copyright terms: Public domain W3C validator