Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfv Structured version   Visualization version   GIF version

Theorem signstfv 29966
 Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfv (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
Distinct variable groups:   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑛,𝑎,𝑏)

Proof of Theorem signstfv
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
21oveq2d 6565 . . 3 (𝑓 = 𝐹 → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
3 simpl 472 . . . . . . 7 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → 𝑓 = 𝐹)
43fveq1d 6105 . . . . . 6 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (𝑓𝑖) = (𝐹𝑖))
54fveq2d 6107 . . . . 5 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (sgn‘(𝑓𝑖)) = (sgn‘(𝐹𝑖)))
65mpteq2dva 4672 . . . 4 (𝑓 = 𝐹 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))) = (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))
76oveq2d 6565 . . 3 (𝑓 = 𝐹 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))))
82, 7mpteq12dv 4663 . 2 (𝑓 = 𝐹 → (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
9 signsv.t . 2 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
10 ovex 6577 . . 3 (0..^(#‘𝐹)) ∈ V
1110mptex 6390 . 2 (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))) ∈ V
128, 9, 11fvmpt 6191 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ifcif 4036  {cpr 4127  {ctp 4129  ⟨cop 4131   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  0cc0 9815  1c1 9816   − cmin 10145  -cneg 10146  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  sgncsgn 13674  Σcsu 14264  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552 This theorem is referenced by:  signstfval  29967  signstf  29969  signstlen  29970  signstf0  29971
 Copyright terms: Public domain W3C validator