Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu3 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
sigaclcu3.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
sigaclcu3.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) |
sigaclcu3.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
sigaclcu3 | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
2 | 1 | iuneq1d 4481 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ℕ 𝐴) |
3 | sigaclcu3.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
5 | sigaclcu3.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ 𝑆) | |
6 | 5 | ralrimiva 2949 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
8 | 1 | raleqdv 3121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → (∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆)) |
9 | 7, 8 | mpbid 221 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
10 | sigaclcu2 29510 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) | |
11 | 4, 9, 10 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
12 | 2, 11 | eqeltrd 2688 | . 2 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
13 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑁 = (1..^𝑀)) | |
14 | 13 | iuneq1d 4481 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ (1..^𝑀)𝐴) |
15 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑆 ∈ ∪ ran sigAlgebra) |
16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
17 | 13 | raleqdv 3121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → (∀𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆)) |
18 | 16, 17 | mpbid 221 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) |
19 | sigaclfu2 29511 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) | |
20 | 15, 18, 19 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ (1..^𝑀)𝐴 ∈ 𝑆) |
21 | 14, 20 | eqeltrd 2688 | . 2 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
22 | sigaclcu3.2 | . 2 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) | |
23 | 12, 21, 22 | mpjaodan 823 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∪ cuni 4372 ∪ ciun 4455 ran crn 5039 (class class class)co 6549 1c1 9816 ℕcn 10897 ..^cfzo 12334 sigAlgebracsiga 29497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-card 8648 df-acn 8651 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-siga 29498 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |