Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu2 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union - indexing on ℕ (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
sigaclcu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4488 | . . 3 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) |
3 | simpl 472 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | abid 2598 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) | |
5 | eleq1a 2683 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑆 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
6 | 5 | ralimi 2936 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
7 | r19.23v 3005 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
8 | 6, 7 | sylib 207 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
9 | 8 | imp 444 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
10 | 9 | adantll 746 | . . . . . . 7 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
11 | 4, 10 | sylan2b 491 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥 ∈ 𝑆) |
12 | 11 | ralrimiva 2949 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
13 | nfab1 2753 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} | |
14 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑥𝑆 | |
15 | 13, 14 | dfss3f 3560 | . . . . 5 ⊢ ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
16 | 12, 15 | sylibr 223 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆) |
17 | elpw2g 4754 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) | |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) |
19 | 16, 18 | mpbird 246 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆) |
20 | nnct 12642 | . . . 4 ⊢ ℕ ≼ ω | |
21 | abrexct 28882 | . . . 4 ⊢ (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) | |
22 | 20, 21 | mp1i 13 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) |
23 | sigaclcu 29507 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) | |
24 | 3, 19, 22, 23 | syl3anc 1318 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) |
25 | 2, 24 | eqeltrd 2688 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 ∪ ciun 4455 class class class wbr 4583 ran crn 5039 ωcom 6957 ≼ cdom 7839 ℕcn 10897 sigAlgebracsiga 29497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-card 8648 df-acn 8651 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-siga 29498 |
This theorem is referenced by: sigaclfu2 29511 sigaclcu3 29512 measiun 29608 |
Copyright terms: Public domain | W3C validator |