HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Visualization version   GIF version

Theorem shsel3 27558
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 shsel 27557 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
2 id 22 . . . . . . . 8 (𝐶 = (𝑥 + 𝑧) → 𝐶 = (𝑥 + 𝑧))
3 shel 27452 . . . . . . . . . . 11 ((𝐴S𝑥𝐴) → 𝑥 ∈ ℋ)
4 shel 27452 . . . . . . . . . . 11 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
5 hvaddsubval 27274 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
63, 4, 5syl2an 493 . . . . . . . . . 10 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
76an4s 865 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
87anassrs 678 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
92, 8sylan9eqr 2666 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → 𝐶 = (𝑥 (-1 · 𝑧)))
10 neg1cn 11001 . . . . . . . . . . 11 -1 ∈ ℂ
11 shmulcl 27459 . . . . . . . . . . 11 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1210, 11mp3an2 1404 . . . . . . . . . 10 ((𝐵S𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1312adantll 746 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1413adantlr 747 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
15 oveq2 6557 . . . . . . . . . 10 (𝑦 = (-1 · 𝑧) → (𝑥 𝑦) = (𝑥 (-1 · 𝑧)))
1615eqeq2d 2620 . . . . . . . . 9 (𝑦 = (-1 · 𝑧) → (𝐶 = (𝑥 𝑦) ↔ 𝐶 = (𝑥 (-1 · 𝑧))))
1716rspcev 3282 . . . . . . . 8 (((-1 · 𝑧) ∈ 𝐵𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1814, 17sylan 487 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
199, 18syldan 486 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
2019ex 449 . . . . 5 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
2120rexlimdva 3013 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
22 id 22 . . . . . . . 8 (𝐶 = (𝑥 𝑦) → 𝐶 = (𝑥 𝑦))
23 shel 27452 . . . . . . . . . . 11 ((𝐵S𝑦𝐵) → 𝑦 ∈ ℋ)
24 hvsubval 27257 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
253, 23, 24syl2an 493 . . . . . . . . . 10 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2625an4s 865 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2726anassrs 678 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2822, 27sylan9eqr 2666 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → 𝐶 = (𝑥 + (-1 · 𝑦)))
29 shmulcl 27459 . . . . . . . . . . 11 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3010, 29mp3an2 1404 . . . . . . . . . 10 ((𝐵S𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3130adantll 746 . . . . . . . . 9 (((𝐴S𝐵S ) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3231adantlr 747 . . . . . . . 8 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
33 oveq2 6557 . . . . . . . . . 10 (𝑧 = (-1 · 𝑦) → (𝑥 + 𝑧) = (𝑥 + (-1 · 𝑦)))
3433eqeq2d 2620 . . . . . . . . 9 (𝑧 = (-1 · 𝑦) → (𝐶 = (𝑥 + 𝑧) ↔ 𝐶 = (𝑥 + (-1 · 𝑦))))
3534rspcev 3282 . . . . . . . 8 (((-1 · 𝑦) ∈ 𝐵𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3632, 35sylan 487 . . . . . . 7 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3728, 36syldan 486 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3837ex 449 . . . . 5 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
3938rexlimdva 3013 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑦𝐵 𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
4021, 39impbid 201 . . 3 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
4140rexbidva 3031 . 2 ((𝐴S𝐵S ) → (∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
421, 41bitrd 267 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  cc 9813  1c1 9816  -cneg 10146  chil 27160   + cva 27161   · csm 27162   cmv 27166   S csh 27169   + cph 27172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr2 27250  ax-hvmul0 27251
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-grpo 26731  df-ablo 26783  df-hvsub 27212  df-sh 27448  df-shs 27551
This theorem is referenced by:  pjimai  28419
  Copyright terms: Public domain W3C validator