HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   GIF version

Theorem shintcli 27572
Description: Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1 (𝐴S𝐴 ≠ ∅)
Assertion
Ref Expression
shintcli 𝐴S

Proof of Theorem shintcli
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5 (𝐴S𝐴 ≠ ∅)
21simpri 477 . . . 4 𝐴 ≠ ∅
3 n0 3890 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
4 intss1 4427 . . . . . . 7 (𝑧𝐴 𝐴𝑧)
51simpli 473 . . . . . . . . 9 𝐴S
65sseli 3564 . . . . . . . 8 (𝑧𝐴𝑧S )
7 shss 27451 . . . . . . . 8 (𝑧S𝑧 ⊆ ℋ)
86, 7syl 17 . . . . . . 7 (𝑧𝐴𝑧 ⊆ ℋ)
94, 8sstrd 3578 . . . . . 6 (𝑧𝐴 𝐴 ⊆ ℋ)
109exlimiv 1845 . . . . 5 (∃𝑧 𝑧𝐴 𝐴 ⊆ ℋ)
113, 10sylbi 206 . . . 4 (𝐴 ≠ ∅ → 𝐴 ⊆ ℋ)
122, 11ax-mp 5 . . 3 𝐴 ⊆ ℋ
13 ax-hv0cl 27244 . . . . . 6 0 ∈ ℋ
1413elexi 3186 . . . . 5 0 ∈ V
1514elint2 4417 . . . 4 (0 𝐴 ↔ ∀𝑧𝐴 0𝑧)
16 sh0 27457 . . . . 5 (𝑧S → 0𝑧)
176, 16syl 17 . . . 4 (𝑧𝐴 → 0𝑧)
1815, 17mprgbir 2911 . . 3 0 𝐴
1912, 18pm3.2i 470 . 2 ( 𝐴 ⊆ ℋ ∧ 0 𝐴)
20 elinti 4420 . . . . . . . . 9 (𝑥 𝐴 → (𝑧𝐴𝑥𝑧))
2120com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑥 𝐴𝑥𝑧))
22 elinti 4420 . . . . . . . . 9 (𝑦 𝐴 → (𝑧𝐴𝑦𝑧))
2322com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑦 𝐴𝑦𝑧))
24 shaddcl 27458 . . . . . . . . . 10 ((𝑧S𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
256, 24syl3an1 1351 . . . . . . . . 9 ((𝑧𝐴𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
26253expib 1260 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧))
2721, 23, 26syl2and 499 . . . . . . 7 (𝑧𝐴 → ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝑧))
2827com12 32 . . . . . 6 ((𝑥 𝐴𝑦 𝐴) → (𝑧𝐴 → (𝑥 + 𝑦) ∈ 𝑧))
2928ralrimiv 2948 . . . . 5 ((𝑥 𝐴𝑦 𝐴) → ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
30 ovex 6577 . . . . . 6 (𝑥 + 𝑦) ∈ V
3130elint2 4417 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
3229, 31sylibr 223 . . . 4 ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3332rgen2a 2960 . . 3 𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴
34 shmulcl 27459 . . . . . . . . . 10 ((𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
356, 34syl3an1 1351 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
36353expib 1260 . . . . . . . 8 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧))
3723, 36sylan2d 498 . . . . . . 7 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝑧))
3837com12 32 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑧𝐴 → (𝑥 · 𝑦) ∈ 𝑧))
3938ralrimiv 2948 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
40 ovex 6577 . . . . . 6 (𝑥 · 𝑦) ∈ V
4140elint2 4417 . . . . 5 ((𝑥 · 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
4239, 41sylibr 223 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
4342rgen2 2958 . . 3 𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴
4433, 43pm3.2i 470 . 2 (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)
45 issh2 27450 . 2 ( 𝐴S ↔ (( 𝐴 ⊆ ℋ ∧ 0 𝐴) ∧ (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)))
4619, 44, 45mpbir2an 957 1 𝐴S
Colors of variables: wff setvar class
Syntax hints:  wa 383  wex 1695  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874   cint 4410  (class class class)co 6549  cc 9813  chil 27160   + cva 27161   · csm 27162  0c0v 27165   S csh 27169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-hilex 27240  ax-hfvadd 27241  ax-hv0cl 27244  ax-hfvmul 27246
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-sh 27448
This theorem is referenced by:  shintcl  27573  chintcli  27574  shincli  27605
  Copyright terms: Public domain W3C validator