MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   GIF version

Theorem sgrp2nmndlem5 17239
Description: Lemma 5 for sgrp2nmnd 17240: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s 𝑆 = {𝐴, 𝐵}
mgm2nsgrp.b (Base‘𝑀) = 𝑆
sgrp2nmnd.o (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
Assertion
Ref Expression
sgrp2nmndlem5 ((#‘𝑆) = 2 → 𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3 𝑆 = {𝐴, 𝐵}
21hashprdifel 13047 . 2 ((#‘𝑆) = 2 → (𝐴𝑆𝐵𝑆𝐴𝐵))
3 mgm2nsgrp.b . . . . . . . 8 (Base‘𝑀) = 𝑆
4 sgrp2nmnd.o . . . . . . . 8 (+g𝑀) = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))
5 eqid 2610 . . . . . . . 8 (+g𝑀) = (+g𝑀)
61, 3, 4, 5sgrp2nmndlem2 17234 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → (𝐴(+g𝑀)𝐵) = 𝐴)
763adant3 1074 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) = 𝐴)
8 simp3 1056 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → 𝐴𝐵)
97, 8eqnetrd 2849 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐴(+g𝑀)𝐵) ≠ 𝐵)
109olcd 407 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
11 oveq2 6557 . . . . . . 7 (𝑦 = 𝐴 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐴))
12 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2843 . . . . . 6 (𝑦 = 𝐴 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐴) ≠ 𝐴))
14 oveq2 6557 . . . . . . 7 (𝑦 = 𝐵 → (𝐴(+g𝑀)𝑦) = (𝐴(+g𝑀)𝐵))
15 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
1614, 15neeq12d 2843 . . . . . 6 (𝑦 = 𝐵 → ((𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝐵) ≠ 𝐵))
1713, 16rexprg 4182 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
18173adant3 1074 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐴(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐴(+g𝑀)𝐵) ≠ 𝐵)))
1910, 18mpbird 246 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦)
201, 3, 4, 5sgrp2nmndlem3 17235 . . . . . . 7 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) = 𝐵)
21 necom 2835 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
22 df-ne 2782 . . . . . . . . . . 11 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
2321, 22sylbb 208 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐵 = 𝐴)
24233ad2ant3 1077 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ 𝐵 = 𝐴)
2524adantr 480 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ 𝐵 = 𝐴)
26 eqeq1 2614 . . . . . . . . 9 ((𝐵(+g𝑀)𝐴) = 𝐵 → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2726adantl 481 . . . . . . . 8 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ((𝐵(+g𝑀)𝐴) = 𝐴𝐵 = 𝐴))
2825, 27mtbird 314 . . . . . . 7 (((𝐴𝑆𝐵𝑆𝐴𝐵) ∧ (𝐵(+g𝑀)𝐴) = 𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
2920, 28mpdan 699 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ¬ (𝐵(+g𝑀)𝐴) = 𝐴)
3029neqned 2789 . . . . 5 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐵(+g𝑀)𝐴) ≠ 𝐴)
3130orcd 406 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
32 oveq2 6557 . . . . . . 7 (𝑦 = 𝐴 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐴))
3332, 12neeq12d 2843 . . . . . 6 (𝑦 = 𝐴 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐴) ≠ 𝐴))
34 oveq2 6557 . . . . . . 7 (𝑦 = 𝐵 → (𝐵(+g𝑀)𝑦) = (𝐵(+g𝑀)𝐵))
3534, 15neeq12d 2843 . . . . . 6 (𝑦 = 𝐵 → ((𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝐵) ≠ 𝐵))
3633, 35rexprg 4182 . . . . 5 ((𝐴𝑆𝐵𝑆) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
37363adant3 1074 . . . 4 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦 ↔ ((𝐵(+g𝑀)𝐴) ≠ 𝐴 ∨ (𝐵(+g𝑀)𝐵) ≠ 𝐵)))
3831, 37mpbird 246 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)
39 oveq1 6556 . . . . . . 7 (𝑥 = 𝐴 → (𝑥(+g𝑀)𝑦) = (𝐴(+g𝑀)𝑦))
4039neeq1d 2841 . . . . . 6 (𝑥 = 𝐴 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐴(+g𝑀)𝑦) ≠ 𝑦))
4140rexbidv 3034 . . . . 5 (𝑥 = 𝐴 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦))
42 oveq1 6556 . . . . . . 7 (𝑥 = 𝐵 → (𝑥(+g𝑀)𝑦) = (𝐵(+g𝑀)𝑦))
4342neeq1d 2841 . . . . . 6 (𝑥 = 𝐵 → ((𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4443rexbidv 3034 . . . . 5 (𝑥 = 𝐵 → (∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦))
4541, 44ralprg 4181 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
46453adant3 1074 . . 3 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦 ↔ (∃𝑦 ∈ {𝐴, 𝐵} (𝐴(+g𝑀)𝑦) ≠ 𝑦 ∧ ∃𝑦 ∈ {𝐴, 𝐵} (𝐵(+g𝑀)𝑦) ≠ 𝑦)))
4719, 38, 46mpbir2and 959 . 2 ((𝐴𝑆𝐵𝑆𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦)
483, 1eqtr2i 2633 . . 3 {𝐴, 𝐵} = (Base‘𝑀)
4948, 5isnmnd 17121 . 2 (∀𝑥 ∈ {𝐴, 𝐵}∃𝑦 ∈ {𝐴, 𝐵} (𝑥(+g𝑀)𝑦) ≠ 𝑦𝑀 ∉ Mnd)
502, 47, 493syl 18 1 ((#‘𝑆) = 2 → 𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  ifcif 4036  {cpr 4127  cfv 5804  (class class class)co 6549  cmpt2 6551  2c2 10947  #chash 12979  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mnd 17118
This theorem is referenced by:  sgrp2nmnd  17240  sgrpnmndex  17242
  Copyright terms: Public domain W3C validator