Proof of Theorem sge0p1
Step | Hyp | Ref
| Expression |
1 | | sge0p1.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | fzsuc 12258 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
4 | 3 | mpteq1d 4666 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴) = (𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) |
5 | 4 | fveq2d 6107 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) =
(Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴))) |
6 | | nfv 1830 |
. . 3
⊢
Ⅎ𝑘𝜑 |
7 | | ovex 6577 |
. . . 4
⊢ (𝑀...𝑁) ∈ V |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ∈ V) |
9 | | snex 4835 |
. . . 4
⊢ {(𝑁 + 1)} ∈ V |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → {(𝑁 + 1)} ∈ V) |
11 | | fzp1disj 12269 |
. . . 4
⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
12 | 11 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
13 | | 0xr 9965 |
. . . . 5
⊢ 0 ∈
ℝ* |
14 | 13 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈
ℝ*) |
15 | | pnfxr 9971 |
. . . . 5
⊢ +∞
∈ ℝ* |
16 | 15 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → +∞ ∈
ℝ*) |
17 | | iccssxr 12127 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
18 | | simpl 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝜑) |
19 | | fzelp1 12263 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1))) |
20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...(𝑁 + 1))) |
21 | | sge0p1.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) |
22 | 18, 20, 21 | syl2anc 691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
23 | 17, 22 | sseldi 3566 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈
ℝ*) |
24 | | iccgelb 12101 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐴 ∈ (0[,]+∞))
→ 0 ≤ 𝐴) |
25 | 14, 16, 22, 24 | syl3anc 1318 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ 𝐴) |
26 | | iccleub 12100 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐴 ∈ (0[,]+∞))
→ 𝐴 ≤
+∞) |
27 | 14, 16, 22, 26 | syl3anc 1318 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ≤ +∞) |
28 | 14, 16, 23, 25, 27 | eliccxrd 38600 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
29 | | simpl 472 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {(𝑁 + 1)}) → 𝜑) |
30 | | elsni 4142 |
. . . . . 6
⊢ (𝑘 ∈ {(𝑁 + 1)} → 𝑘 = (𝑁 + 1)) |
31 | 30 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {(𝑁 + 1)}) → 𝑘 = (𝑁 + 1)) |
32 | | simpr 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1)) |
33 | | peano2uz 11617 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
34 | | eluzfz2 12220 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
35 | 1, 33, 34 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
36 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
37 | 32, 36 | eqeltrd 2688 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → 𝑘 ∈ (𝑀...(𝑁 + 1))) |
38 | 29, 31, 37 | syl2anc 691 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1))) |
39 | 29, 38, 21 | syl2anc 691 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ {(𝑁 + 1)}) → 𝐴 ∈ (0[,]+∞)) |
40 | 6, 8, 10, 12, 28, 39 | sge0splitmpt 39304 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) =
((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒
(Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)))) |
41 | | ovex 6577 |
. . . . 5
⊢ (𝑁 + 1) ∈ V |
42 | 41 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑁 + 1) ∈ V) |
43 | | id 22 |
. . . . 5
⊢ (𝜑 → 𝜑) |
44 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑘 = (𝑁 + 1) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))) |
45 | 44 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑘 = (𝑁 + 1) → ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))))) |
46 | | sge0p1.3 |
. . . . . . . . 9
⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) |
47 | 46 | eleq1d 2672 |
. . . . . . . 8
⊢ (𝑘 = (𝑁 + 1) → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈
(0[,]+∞))) |
48 | 45, 47 | imbi12d 333 |
. . . . . . 7
⊢ (𝑘 = (𝑁 + 1) → (((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)))) |
49 | 48, 21 | vtoclg 3239 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ V → ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))) |
50 | 41, 49 | ax-mp 5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)) |
51 | 43, 35, 50 | syl2anc 691 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
52 | 42, 51, 46 | sge0snmpt 39276 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)) = 𝐵) |
53 | 52 | oveq2d 6565 |
. 2
⊢ (𝜑 →
((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒
(Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))) =
((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵)) |
54 | 5, 40, 53 | 3eqtrd 2648 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) =
((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵)) |