Step | Hyp | Ref
| Expression |
1 | | setrec2fun.2 |
. . 3
⊢ 𝐵 = setrecs(𝐹) |
2 | | df-setrecs 42230 |
. . 3
⊢
setrecs(𝐹) = ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
3 | 1, 2 | eqtri 2632 |
. 2
⊢ 𝐵 = ∪
{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
4 | | eqid 2610 |
. . . . . 6
⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
5 | | vex 3176 |
. . . . . . 7
⊢ 𝑥 ∈ V |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑥 ∈ V) |
7 | 4, 6 | setrec1lem1 42233 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
8 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) |
9 | | inss1 3795 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ ∪ (𝐹
“ 𝒫 𝑥))
⊆ 𝐶 |
10 | 8, 9 | syl6ss 3580 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → 𝑤 ⊆ 𝐶) |
11 | | setrec2fun.4 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
12 | | nfv 1830 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑤 ⊆ 𝐶 |
13 | | setrec2fun.1 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎𝐹 |
14 | | nfcv 2751 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎𝑤 |
15 | 13, 14 | nffv 6110 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎(𝐹‘𝑤) |
16 | | nfcv 2751 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎𝐶 |
17 | 15, 16 | nfss 3561 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(𝐹‘𝑤) ⊆ 𝐶 |
18 | 12, 17 | nfim 1813 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎(𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶) |
19 | | sseq1 3589 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑤 → (𝑎 ⊆ 𝐶 ↔ 𝑤 ⊆ 𝐶)) |
20 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑤 → (𝐹‘𝑎) = (𝐹‘𝑤)) |
21 | 20 | sseq1d 3595 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑤 → ((𝐹‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑤) ⊆ 𝐶)) |
22 | 19, 21 | imbi12d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑤 → ((𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) ↔ (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶))) |
23 | 22 | biimpd 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑤 → ((𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶))) |
24 | 18, 23 | spim 2242 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶)) |
25 | 11, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶)) |
26 | 10, 25 | syl5 33 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ 𝐶)) |
27 | 26 | imp 444 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ 𝐶) |
28 | 27 | 3adant2 1073 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ 𝐶) |
29 | | selpw 4115 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝒫 𝑥 ↔ 𝑤 ⊆ 𝑥) |
30 | | eliman0 6133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ 𝒫 𝑥 ∧ ¬ (𝐹‘𝑤) = ∅) → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥)) |
31 | 30 | ex 449 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝒫 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥))) |
32 | 29, 31 | sylbir 224 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ⊆ 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥))) |
33 | | elssuni 4403 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥) → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) |
34 | 32, 33 | syl6 34 |
. . . . . . . . . . . . 13
⊢ (𝑤 ⊆ 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥))) |
35 | | id 22 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤) = ∅ → (𝐹‘𝑤) = ∅) |
36 | | 0ss 3924 |
. . . . . . . . . . . . . 14
⊢ ∅
⊆ ∪ (𝐹 “ 𝒫 𝑥) |
37 | 35, 36 | syl6eqss 3618 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) |
38 | 34, 37 | pm2.61d2 171 |
. . . . . . . . . . . 12
⊢ (𝑤 ⊆ 𝑥 → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) |
39 | 38 | 3ad2ant2 1076 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) |
40 | 28, 39 | ssind 3799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) |
41 | 40 | 3exp 1256 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) |
42 | 41 | alrimiv 1842 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) |
43 | | setrec2fun.3 |
. . . . . . . . . . . 12
⊢ Fun 𝐹 |
44 | 5 | pwex 4774 |
. . . . . . . . . . . . 13
⊢ 𝒫
𝑥 ∈ V |
45 | 44 | funimaex 5890 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (𝐹 “ 𝒫 𝑥) ∈ V) |
46 | 43, 45 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹 “ 𝒫 𝑥) ∈ V |
47 | 46 | uniex 6851 |
. . . . . . . . . 10
⊢ ∪ (𝐹
“ 𝒫 𝑥) ∈
V |
48 | 47 | inex2 4728 |
. . . . . . . . 9
⊢ (𝐶 ∩ ∪ (𝐹
“ 𝒫 𝑥))
∈ V |
49 | | sseq2 3590 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) |
50 | | sseq2 3590 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝐹‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) |
51 | 49, 50 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) |
52 | 51 | imbi2d 329 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))))) |
53 | 52 | albidv 1836 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))))) |
54 | | sseq2 3590 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) |
55 | 53, 54 | imbi12d 333 |
. . . . . . . . 9
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) |
56 | 48, 55 | spcv 3272 |
. . . . . . . 8
⊢
(∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) |
57 | 42, 56 | mpan9 485 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) |
58 | 57, 9 | syl6ss 3580 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) → 𝑥 ⊆ 𝐶) |
59 | 58 | ex 449 |
. . . . 5
⊢ (𝜑 → (∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → 𝑥 ⊆ 𝐶)) |
60 | 7, 59 | sylbid 229 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} → 𝑥 ⊆ 𝐶)) |
61 | 60 | ralrimiv 2948 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}𝑥 ⊆ 𝐶) |
62 | | unissb 4405 |
. . 3
⊢ (∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ⊆ 𝐶 ↔ ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}𝑥 ⊆ 𝐶) |
63 | 61, 62 | sylibr 223 |
. 2
⊢ (𝜑 → ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ⊆ 𝐶) |
64 | 3, 63 | syl5eqss 3612 |
1
⊢ (𝜑 → 𝐵 ⊆ 𝐶) |