Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem3 Structured version   Visualization version   GIF version

Theorem setrec1lem3 42235
 Description: Lemma for setrec1 42237. If each element 𝑎 of 𝐴 is covered by a set 𝑥 recursively generated by 𝐹, then there is a single such set covering all of 𝐴. The set is constructed explicitly using setrec1lem2 42234. It turns out that 𝑥 = 𝐴 also works, i.e., given the hypotheses it is possible to prove that 𝐴 ∈ 𝑌. I don't know if proving this fact directly using setrec1lem1 42233 would be any easier than the current proof using setrec1lem2 42234, and it would only slightly simplify the proof of setrec1 42237. Other than the use of bnd2d 42226, this is a purely technical theorem for rearranging notation from that of setrec1lem2 42234 to that of setrec1 42237. (Contributed by Emmett Weisz, 20-Jan-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
setrec1lem3.1 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem3.2 (𝜑𝐴 ∈ V)
setrec1lem3.3 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
Assertion
Ref Expression
setrec1lem3 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
Distinct variable groups:   𝑦,𝑤,𝑧   𝑥,𝑎,𝐴   𝑌,𝑎,𝑥   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎)   𝐴(𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤,𝑎)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 setrec1lem3.2 . . . 4 (𝜑𝐴 ∈ V)
2 setrec1lem3.3 . . . . . 6 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌))
3 exancom 1774 . . . . . . 7 (∃𝑥(𝑎𝑥𝑥𝑌) ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
43ralbii 2963 . . . . . 6 (∀𝑎𝐴𝑥(𝑎𝑥𝑥𝑌) ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
52, 4sylib 207 . . . . 5 (𝜑 → ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
6 df-rex 2902 . . . . . 6 (∃𝑥𝑌 𝑎𝑥 ↔ ∃𝑥(𝑥𝑌𝑎𝑥))
76ralbii 2963 . . . . 5 (∀𝑎𝐴𝑥𝑌 𝑎𝑥 ↔ ∀𝑎𝐴𝑥(𝑥𝑌𝑎𝑥))
85, 7sylibr 223 . . . 4 (𝜑 → ∀𝑎𝐴𝑥𝑌 𝑎𝑥)
91, 8bnd2d 42226 . . 3 (𝜑 → ∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥))
10 exancom 1774 . . . . . . . 8 (∃𝑥(𝑥𝑣𝑎𝑥) ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
11 df-rex 2902 . . . . . . . 8 (∃𝑥𝑣 𝑎𝑥 ↔ ∃𝑥(𝑥𝑣𝑎𝑥))
12 eluni 4375 . . . . . . . 8 (𝑎 𝑣 ↔ ∃𝑥(𝑎𝑥𝑥𝑣))
1310, 11, 123bitr4i 291 . . . . . . 7 (∃𝑥𝑣 𝑎𝑥𝑎 𝑣)
1413ralbii 2963 . . . . . 6 (∀𝑎𝐴𝑥𝑣 𝑎𝑥 ↔ ∀𝑎𝐴 𝑎 𝑣)
15 dfss3 3558 . . . . . 6 (𝐴 𝑣 ↔ ∀𝑎𝐴 𝑎 𝑣)
1614, 15bitr4i 266 . . . . 5 (∀𝑎𝐴𝑥𝑣 𝑎𝑥𝐴 𝑣)
1716anbi2i 726 . . . 4 ((𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ (𝑣𝑌𝐴 𝑣))
1817exbii 1764 . . 3 (∃𝑣(𝑣𝑌 ∧ ∀𝑎𝐴𝑥𝑣 𝑎𝑥) ↔ ∃𝑣(𝑣𝑌𝐴 𝑣))
199, 18sylib 207 . 2 (𝜑 → ∃𝑣(𝑣𝑌𝐴 𝑣))
20 setrec1lem3.1 . . . . . . 7 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
21 vex 3176 . . . . . . . 8 𝑣 ∈ V
2221a1i 11 . . . . . . 7 (𝑣𝑌𝑣 ∈ V)
23 id 22 . . . . . . 7 (𝑣𝑌𝑣𝑌)
2420, 22, 23setrec1lem2 42234 . . . . . 6 (𝑣𝑌 𝑣𝑌)
2524anim1i 590 . . . . 5 ((𝑣𝑌𝐴 𝑣) → ( 𝑣𝑌𝐴 𝑣))
2625ancomd 466 . . . 4 ((𝑣𝑌𝐴 𝑣) → (𝐴 𝑣 𝑣𝑌))
2721uniex 6851 . . . . 5 𝑣 ∈ V
28 sseq2 3590 . . . . . 6 (𝑥 = 𝑣 → (𝐴𝑥𝐴 𝑣))
29 eleq1 2676 . . . . . 6 (𝑥 = 𝑣 → (𝑥𝑌 𝑣𝑌))
3028, 29anbi12d 743 . . . . 5 (𝑥 = 𝑣 → ((𝐴𝑥𝑥𝑌) ↔ (𝐴 𝑣 𝑣𝑌)))
3127, 30spcev 3273 . . . 4 ((𝐴 𝑣 𝑣𝑌) → ∃𝑥(𝐴𝑥𝑥𝑌))
3226, 31syl 17 . . 3 ((𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3332exlimiv 1845 . 2 (∃𝑣(𝑣𝑌𝐴 𝑣) → ∃𝑥(𝐴𝑥𝑥𝑌))
3419, 33syl 17 1 (𝜑 → ∃𝑥(𝐴𝑥𝑥𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  ∪ cuni 4372  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511 This theorem is referenced by:  setrec1  42237
 Copyright terms: Public domain W3C validator