MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serf0 Structured version   Visualization version   GIF version

Theorem serf0 14259
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
serf0.2 (𝜑𝑀 ∈ ℤ)
serf0.3 (𝜑𝐹𝑉)
serf0.4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
serf0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serf0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serf0
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
2 serf0.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 caucvgb.1 . . . . . . 7 𝑍 = (ℤ𝑀)
43caucvgb 14258 . . . . . 6 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
52, 1, 4syl2anc 691 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
61, 5mpbid 221 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
73cau3 13943 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
86, 7sylib 207 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
93peano2uzs 11618 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
109adantl 481 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
11 eluzelz 11573 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
12 uzid 11578 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
13 peano2uz 11617 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
14 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1)))
1514oveq2d 6565 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))
1615fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))))
1716breq1d 4593 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1817rspcv 3278 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1911, 12, 13, 184syl 19 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
2019adantld 482 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
2120ralimia 2934 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)
22 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2322, 3syl6eleq 2698 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
24 eluzelz 11573 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
26 eluzp1m1 11587 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2725, 26sylan 487 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
28 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1)))
29 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1))
3029fveq2d 6107 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))
3128, 30oveq12d 6567 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))
3231fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))))
3332breq1d 4593 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3433rspcv 3278 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3527, 34syl 17 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
36 serf0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
373, 2, 36serf 12691 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
3837ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ)
393uztrn2 11581 . . . . . . . . . . . . . . 15 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4022, 39sylan 487 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4127, 40syldan 486 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
4238, 41ffvelrnd 6268 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ)
433uztrn2 11581 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4410, 43sylan 487 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4538, 44ffvelrnd 6268 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ)
4642, 45abssubd 14040 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
47 eluzelz 11573 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4948zcnd 11359 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
50 ax-1cn 9873 . . . . . . . . . . . . . . 15 1 ∈ ℂ
51 npcan 10169 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
5249, 50, 51sylancl 693 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5352fveq2d 6107 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘))
5453oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))
5554fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))))
562ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
57 eluzp1p1 11589 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5823, 57syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
59 eqid 2610 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
6059uztrn2 11581 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
6158, 60sylan 487 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
62 seqm1 12680 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)))
6356, 61, 62syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)))
6463oveq1d 6564 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
6536adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
6644, 65syldan 486 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
6742, 66pncan2d 10273 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹𝑘))
6864, 67eqtr2d 2645 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
6968fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
7046, 55, 693eqtr4d 2654 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
7170breq1d 4593 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
7235, 71sylibd 228 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
7372ralrimdva 2952 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
7421, 73syl5 33 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
75 fveq2 6103 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
7675raleqdv 3121 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
7776rspcev 3282 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
7810, 74, 77syl6an 566 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
7978rexlimdva 3013 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8079ralimdv 2946 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
818, 80mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
82 serf0.3 . . 3 (𝜑𝐹𝑉)
83 eqidd 2611 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
843, 2, 82, 83, 36clim0c 14086 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8581, 84mpbird 246 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  cz 11254  cuz 11563  +crp 11708  seqcseq 12663  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068
This theorem is referenced by:  mertenslem2  14456  radcnvlem1  23971  dvgrat  37533  expfac  38724
  Copyright terms: Public domain W3C validator