Proof of Theorem seqid
Step | Hyp | Ref
| Expression |
1 | | seqid.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzelz 11573 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
3 | | seq1 12676 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
4 | 1, 2, 3 | 3syl 18 |
. . . 4
⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
5 | | seqeq1 12666 |
. . . . . 6
⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) |
6 | 5 | fveq1d 6105 |
. . . . 5
⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
7 | 6 | eqeq1d 2612 |
. . . 4
⊢ (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
8 | 4, 7 | syl5ibcom 234 |
. . 3
⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
9 | | eluzel2 11568 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
10 | 1, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | | seqm1 12680 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
12 | 10, 11 | sylan 487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
13 | | seqid.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
14 | | seqid.1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) |
15 | 14 | ralrimiva 2949 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
16 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍)) |
17 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑍 → 𝑥 = 𝑍) |
18 | 16, 17 | eqeq12d 2625 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍)) |
19 | 18 | rspcv 3278 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥 → (𝑍 + 𝑍) = 𝑍)) |
20 | 13, 15, 19 | sylc 63 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍) |
22 | | eluzp1m1 11587 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
23 | 10, 22 | sylan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
24 | | seqid.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
25 | 24 | adantlr 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
26 | 21, 23, 25 | seqid3 12707 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍) |
27 | 26 | oveq1d 6564 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁)) = (𝑍 + (𝐹‘𝑁))) |
28 | | seqid.4 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑁) ∈ 𝑆) |
30 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
31 | | oveq2 6557 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘𝑁))) |
32 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑁) → 𝑥 = (𝐹‘𝑁)) |
33 | 31, 32 | eqeq12d 2625 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
34 | 33 | rspcv 3278 |
. . . . . 6
⊢ ((𝐹‘𝑁) ∈ 𝑆 → (∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥 → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
35 | 29, 30, 34 | sylc 63 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁)) |
36 | 12, 27, 35 | 3eqtrd 2648 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
37 | 36 | ex 449 |
. . 3
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
38 | | uzp1 11597 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
39 | 1, 38 | syl 17 |
. . 3
⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
40 | 8, 37, 39 | mpjaod 395 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
41 | | eqidd 2611 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
42 | 1, 40, 41 | seqfeq2 12686 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |