MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq2 Structured version   Visualization version   GIF version

Theorem seqfveq2 12685
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seqfveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seqfveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seqfveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑀(𝑘)

Proof of Theorem seqfveq2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 12220 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2676 . . . . . 6 (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 6103 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 6103 . . . . . . 7 (𝑥 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2625 . . . . . 6 (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 333 . . . . 5 (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 329 . . . 4 (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2676 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁)))
11 fveq2 6103 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
12 fveq2 6103 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑛))
1311, 12eqeq12d 2625 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))
1410, 13imbi12d 333 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
1514imbi2d 329 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))))
16 eleq1 2676 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁)))
17 fveq2 6103 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fveq2 6103 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))
1917, 18eqeq12d 2625 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
2016, 19imbi12d 333 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
2120imbi2d 329 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
22 eleq1 2676 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 6103 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 6103 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2625 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 333 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seqfveq2.2 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seqfveq2.1 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 11573 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
32 seq1 12676 . . . . . . . 8 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3331, 32syl 17 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3428, 33eqtr4d 2647 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3534a1d 25 . . . . 5 (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
3635a1i 11 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
37 peano2fzr 12225 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁))
3837adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁))
3938expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁)))
4039imim1d 80 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
41 oveq1 6556 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
42 simpl 472 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (ℤ𝐾))
43 uztrn 11580 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4442, 29, 43syl2anr 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝑀))
45 seqp1 12678 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
47 seqp1 12678 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝐾) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4847ad2antrl 760 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
49 eluzp1p1 11589 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝐾) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
5049ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
51 elfzuz3 12210 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5251ad2antll 761 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
53 elfzuzb 12207 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
5450, 52, 53sylanbrc 695 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁))
55 seqfveq2.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5655ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5756adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
58 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
59 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
6058, 59eqeq12d 2625 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))))
6160rspcv 3278 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))))
6254, 57, 61sylc 63 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
6362oveq2d 6565 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6448, 63eqtr4d 2647 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
6546, 64eqeq12d 2625 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6641, 65syl5ibr 235 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
6766expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
6867a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
6940, 68syld 46 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
7069expcom 450 . . . . 5 (𝑛 ∈ (ℤ𝐾) → (𝜑 → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
7170a2d 29 . . . 4 (𝑛 ∈ (ℤ𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
729, 15, 21, 27, 36, 71uzind4 11622 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
731, 72mpcom 37 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
743, 73mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  seqfeq2  12686  seqfveq  12687  seqz  12711
  Copyright terms: Public domain W3C validator