Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1p Structured version   Visualization version   GIF version

Theorem seq1p 12697
 Description: Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqsplit.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqsplit.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqsplit.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seq1p.4 (𝜑𝑀 ∈ ℤ)
seq1p.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
Assertion
Ref Expression
seq1p (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝑀,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem seq1p
StepHypRef Expression
1 seqsplit.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seqsplit.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3 seqsplit.3 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
4 seq1p.4 . . . 4 (𝜑𝑀 ∈ ℤ)
5 uzid 11578 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
7 seq1p.5 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
81, 2, 3, 6, 7seqsplit 12696 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
9 seq1 12676 . . . 4 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
104, 9syl 17 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
1110oveq1d 6564 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
128, 11eqtrd 2644 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator