Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2 Structured version   Visualization version   GIF version

Theorem selberg2 25040
 Description: Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg2
StepHypRef Expression
1 reex 9906 . . . . . . 7 ℝ ∈ V
2 rpssre 11719 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 4731 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovex 6577 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V
65a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V)
7 ovex 6577 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ V
87a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ V)
9 eqidd 2611 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))))
10 eqidd 2611 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)))
114, 6, 8, 9, 10offval2 6812 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))))
1211trud 1484 . . 3 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)))
13 fzfid 12634 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
14 elfznn 12241 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1514adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
16 vmacl 24644 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1715, 16syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1817recnd 9947 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
1915nnrpd 11746 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
20 relogcl 24126 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2119, 20syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
2221recnd 9947 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
23 rpre 11715 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
24 nndivre 10933 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
2523, 14, 24syl2an 493 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
26 chpcl 24650 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
2827recnd 9947 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
2922, 28addcld 9938 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
3018, 29mulcld 9939 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℂ)
3113, 30fsumcl 14311 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℂ)
32 rpcn 11717 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
33 rpne0 11724 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3431, 32, 33divcld 10680 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
35 2cn 10968 . . . . . . 7 2 ∈ ℂ
36 relogcl 24126 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
3736recnd 9947 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
38 mulcl 9899 . . . . . . 7 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
3935, 37, 38sylancr 694 . . . . . 6 (𝑥 ∈ ℝ+ → (2 · (log‘𝑥)) ∈ ℂ)
4018, 22mulcld 9939 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
4113, 40fsumcl 14311 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
42 chpcl 24650 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4323, 42syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
4443recnd 9947 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
4544, 37mulcld 9939 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
4641, 45subcld 10271 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) ∈ ℂ)
4746, 32, 33divcld 10680 . . . . . 6 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℂ)
4834, 39, 47sub32d 10303 . . . . 5 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) − (2 · (log‘𝑥))))
49 rpcnne0 11726 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
50 divsubdir 10600 . . . . . . . 8 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℂ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)))
5131, 46, 49, 50syl3anc 1318 . . . . . . 7 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)))
5218, 22, 28adddid 9943 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
5352sumeq2dv 14281 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
5418, 28mulcld 9939 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
5513, 40, 54fsumadd 14317 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
5653, 55eqtrd 2644 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
5756oveq1d 6564 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))))
5813, 54fsumcl 14311 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
5941, 58, 45pnncand 10310 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((ψ‘𝑥) · (log‘𝑥))))
6058, 45addcomd 10117 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((ψ‘𝑥) · (log‘𝑥))) = (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
6157, 59, 603eqtrd 2648 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) = (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
6261oveq1d 6564 . . . . . . 7 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥)))) / 𝑥) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))
6351, 62eqtr3d 2646 . . . . . 6 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))
6463oveq1d 6564 . . . . 5 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))))
6548, 64eqtrd 2644 . . . 4 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))))
6665mpteq2ia 4668 . . 3 (𝑥 ∈ ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))))
6712, 66eqtri 2632 . 2 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))))
68 selberg 25037 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
69 selberg2lem 25039 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
70 o1sub 14194 . . 3 (((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) ∈ 𝑂(1))
7168, 69, 70mp2an 704 . 2 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))) ∈ 𝑂(1)
7267, 71eqeltrri 2685 1 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453  𝑂(1)co1 14065  Σcsu 14264  logclog 24105  Λcvma 24618  ψcchp 24619 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-em 24519  df-cht 24623  df-vma 24624  df-chp 24625  df-ppi 24626  df-mu 24627 This theorem is referenced by:  selberg2b  25041  selberg3  25048  selberg4  25050  selbergr  25057
 Copyright terms: Public domain W3C validator