Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑑 → (Λ‘𝑛) = (Λ‘𝑑)) |
2 | | oveq2 6557 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑑 → (𝑥 / 𝑛) = (𝑥 / 𝑑)) |
3 | 2 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑑 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑑))) |
4 | 1, 3 | oveq12d 6567 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑑 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) |
5 | 4 | cbvsumv 14274 |
. . . . . . . . . . 11
⊢
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) |
6 | | fzfid 12634 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin) |
7 | | elfznn 12241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
8 | 7 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
9 | | vmacl 24644 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℝ) |
11 | 10 | recnd 9947 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℂ) |
12 | | elfznn 12241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑))) → 𝑚 ∈
ℕ) |
13 | 12 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑚 ∈
ℕ) |
14 | | vmacl 24644 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ →
(Λ‘𝑚) ∈
ℝ) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
(Λ‘𝑚) ∈
ℝ) |
16 | 15 | recnd 9947 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
(Λ‘𝑚) ∈
ℂ) |
17 | 6, 11, 16 | fsummulc2 14358 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))(Λ‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚))) |
18 | 7 | nnrpd 11746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) |
19 | | rpdivcl 11732 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) |
20 | 18, 19 | sylan2 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) |
21 | 20 | rpred 11748 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ) |
22 | | chpval 24648 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑑)) = Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))(Λ‘𝑚)) |
24 | 23 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) =
((Λ‘𝑑)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))(Λ‘𝑚))) |
25 | 13 | nncnd 10913 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑚 ∈
ℂ) |
26 | 7 | ad2antlr 759 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑑 ∈
ℕ) |
27 | 26 | nncnd 10913 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑑 ∈
ℂ) |
28 | 26 | nnne0d 10942 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑑 ≠ 0) |
29 | 25, 27, 28 | divcan3d 10685 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚) |
30 | 29 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
(Λ‘((𝑑
· 𝑚) / 𝑑)) = (Λ‘𝑚)) |
31 | 30 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
((Λ‘𝑑)
· (Λ‘((𝑑 · 𝑚) / 𝑑))) = ((Λ‘𝑑) · (Λ‘𝑚))) |
32 | 31 | sumeq2dv 14281 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))((Λ‘𝑑) ·
(Λ‘((𝑑
· 𝑚) / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚))) |
33 | 17, 24, 32 | 3eqtr4d 2654 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) = Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))((Λ‘𝑑) ·
(Λ‘((𝑑
· 𝑚) / 𝑑)))) |
34 | 33 | sumeq2dv 14281 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑)))) |
35 | 5, 34 | syl5eq 2656 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑)))) |
36 | | oveq1 6556 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑑 · 𝑚) → (𝑛 / 𝑑) = ((𝑑 · 𝑚) / 𝑑)) |
37 | 36 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑑 · 𝑚) → (Λ‘(𝑛 / 𝑑)) = (Λ‘((𝑑 · 𝑚) / 𝑑))) |
38 | 37 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑑 · 𝑚) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑)))) |
39 | | rpre 11715 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
40 | | ssrab2 3650 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ ℕ |
41 | | simprr 792 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
42 | 40, 41 | sseldi 3566 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℕ) |
43 | 42 | anassrs 678 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → 𝑑 ∈ ℕ) |
44 | 43, 9 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘𝑑) ∈ ℝ) |
45 | | elfznn 12241 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
47 | | dvdsdivcl 14876 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
48 | 46, 47 | sylan 487 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
49 | 40, 48 | sseldi 3566 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑑) ∈ ℕ) |
50 | | vmacl 24644 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 / 𝑑) ∈ ℕ →
(Λ‘(𝑛 / 𝑑)) ∈
ℝ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘(𝑛 / 𝑑)) ∈ ℝ) |
52 | 44, 51 | remulcld 9949 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ) |
53 | 52 | recnd 9947 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ) |
54 | 53 | anasss 677 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((Λ‘𝑑) ·
(Λ‘(𝑛 / 𝑑))) ∈
ℂ) |
55 | 38, 39, 54 | dvdsflsumcom 24714 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑)))) |
56 | 35, 55 | eqtr4d 2647 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑)))) |
57 | 56 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))) |
58 | | fzfid 12634 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) |
59 | | vmacl 24644 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
60 | 46, 59 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℝ) |
61 | 60 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℂ) |
62 | 45 | nnrpd 11746 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
63 | | rpdivcl 11732 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
64 | 62, 63 | sylan2 490 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
65 | 64 | rpred 11748 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
66 | | chpcl 24650 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℝ) |
68 | 67 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℂ) |
69 | 61, 68 | mulcld 9939 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℂ) |
70 | 46 | nnrpd 11746 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
71 | | relogcl 24126 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℝ+
→ (log‘𝑛) ∈
ℝ) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℝ) |
73 | 72 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℂ) |
74 | 61, 73 | mulcld 9939 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (log‘𝑛))
∈ ℂ) |
75 | 58, 69, 74 | fsumadd 14317 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))) |
76 | | fzfid 12634 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1...𝑛) ∈
Fin) |
77 | | dvdsssfz1 14878 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
78 | 46, 77 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ {𝑦 ∈ ℕ
∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
79 | | ssfi 8065 |
. . . . . . . . . . . 12
⊢
(((1...𝑛) ∈ Fin
∧ {𝑦 ∈ ℕ
∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ∈ Fin) |
80 | 76, 78, 79 | syl2anc 691 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ {𝑦 ∈ ℕ
∣ 𝑦 ∥ 𝑛} ∈ Fin) |
81 | 80, 52 | fsumrecl 14312 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
{𝑦 ∈ ℕ ∣
𝑦 ∥ 𝑛} ((Λ‘𝑑) ·
(Λ‘(𝑛 / 𝑑))) ∈
ℝ) |
82 | 81 | recnd 9947 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
{𝑦 ∈ ℕ ∣
𝑦 ∥ 𝑛} ((Λ‘𝑑) ·
(Λ‘(𝑛 / 𝑑))) ∈
ℂ) |
83 | 58, 82, 74 | fsumadd 14317 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))) |
84 | 57, 75, 83 | 3eqtr4d 2654 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛)))) |
85 | 73, 68 | addcomd 10117 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘𝑛) +
(ψ‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))) |
86 | 85 | oveq2d 6565 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((log‘𝑛) +
(ψ‘(𝑥 / 𝑛)))) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛)))) |
87 | 61, 68, 73 | adddid 9943 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((ψ‘(𝑥 /
𝑛)) + (log‘𝑛))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛)))) |
88 | 86, 87 | eqtrd 2644 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((log‘𝑛) +
(ψ‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛)))) |
89 | 88 | sumeq2dv 14281 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛)))) |
90 | | logsqvma2 25032 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛)))) |
91 | 46, 90 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
{𝑦 ∈ ℕ ∣
𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛)))) |
92 | 91 | sumeq2dv 14281 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛)))) |
93 | 84, 89, 92 | 3eqtr4d 2654 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2))) |
94 | 36 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑))) |
95 | 94 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) |
96 | 95 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
97 | | mucl 24667 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℤ) |
98 | 42, 97 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℤ) |
99 | 98 | zcnd 11359 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℂ) |
100 | 62 | ad2antrl 760 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑛 ∈ ℝ+) |
101 | 42 | nnrpd 11746 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℝ+) |
102 | 100, 101 | rpdivcld 11765 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (𝑛 / 𝑑) ∈
ℝ+) |
103 | | relogcl 24126 |
. . . . . . . . . . 11
⊢ ((𝑛 / 𝑑) ∈ ℝ+ →
(log‘(𝑛 / 𝑑)) ∈
ℝ) |
104 | 103 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝑛 / 𝑑) ∈ ℝ+ →
(log‘(𝑛 / 𝑑)) ∈
ℂ) |
105 | 102, 104 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
106 | 105 | sqcld 12868 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ) |
107 | 99, 106 | mulcld 9939 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ (𝑛 ∈
(1...(⌊‘𝑥))
∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ) |
108 | 96, 39, 107 | dvdsflsumcom 24714 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
109 | 29 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
(log‘((𝑑 ·
𝑚) / 𝑑)) = (log‘𝑚)) |
110 | 109 | oveq1d 6564 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
((log‘((𝑑 ·
𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2)) |
111 | 110 | oveq2d 6565 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
((μ‘𝑑) ·
((log‘((𝑑 ·
𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2))) |
112 | 111 | sumeq2dv 14281 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
113 | 112 | sumeq2dv 14281 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
114 | 93, 108, 113 | 3eqtrd 2648 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
115 | 114 | oveq1d 6564 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥)) |
116 | 115 | oveq1d 6564 |
. . 3
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
117 | 116 | mpteq2ia 4668 |
. 2
⊢ (𝑥 ∈ ℝ+
↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
118 | | eqid 2610 |
. . 3
⊢
((((log‘(𝑥 /
𝑑))↑2) + (2 − (2
· (log‘(𝑥 /
𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑑))))) / 𝑑) |
119 | 118 | selberglem2 25035 |
. 2
⊢ (𝑥 ∈ ℝ+
↦ ((Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) |
120 | 117, 119 | eqeltri 2684 |
1
⊢ (𝑥 ∈ ℝ+
↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) |