Step | Hyp | Ref
| Expression |
1 | | issect.s |
. 2
⊢ 𝑆 = (Sect‘𝐶) |
2 | | issect.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
3 | | fveq2 6103 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
4 | | issect.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
5 | 3, 4 | syl6eqr 2662 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | | fvex 6113 |
. . . . . . . 8
⊢ (Hom
‘𝑐) ∈
V |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) ∈ V) |
8 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) |
9 | | issect.h |
. . . . . . . 8
⊢ 𝐻 = (Hom ‘𝐶) |
10 | 8, 9 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
11 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) |
12 | 11 | oveqd 6566 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
13 | 12 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑓 ∈ (𝑥ℎ𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦))) |
14 | 11 | oveqd 6566 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑦ℎ𝑥) = (𝑦𝐻𝑥)) |
15 | 14 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑔 ∈ (𝑦ℎ𝑥) ↔ 𝑔 ∈ (𝑦𝐻𝑥))) |
16 | 13, 15 | anbi12d 743 |
. . . . . . . 8
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ↔ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)))) |
17 | | simpl 472 |
. . . . . . . . . . . . 13
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) |
18 | 17 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (comp‘𝑐) = (comp‘𝐶)) |
19 | | issect.o |
. . . . . . . . . . . 12
⊢ · =
(comp‘𝐶) |
20 | 18, 19 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (comp‘𝑐) = · ) |
21 | 20 | oveqd 6566 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (〈𝑥, 𝑦〉(comp‘𝑐)𝑥) = (〈𝑥, 𝑦〉 · 𝑥)) |
22 | 21 | oveqd 6566 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓)) |
23 | 17 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (Id‘𝑐) = (Id‘𝐶)) |
24 | | issect.i |
. . . . . . . . . . 11
⊢ 1 =
(Id‘𝐶) |
25 | 23, 24 | syl6eqr 2662 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (Id‘𝑐) = 1 ) |
26 | 25 | fveq1d 6105 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
27 | 22, 26 | eqeq12d 2625 |
. . . . . . . 8
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) ↔ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))) |
28 | 16, 27 | anbi12d 743 |
. . . . . . 7
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥)))) |
29 | 7, 10, 28 | sbcied2 3440 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ([(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥)))) |
30 | 29 | opabbidv 4648 |
. . . . 5
⊢ (𝑐 = 𝐶 → {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))}) |
31 | 5, 5, 30 | mpt2eq123dv 6615 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
32 | | df-sect 16230 |
. . . 4
⊢ Sect =
(𝑐 ∈ Cat ↦
(𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |
33 | | fvex 6113 |
. . . . . 6
⊢
(Base‘𝐶)
∈ V |
34 | 4, 33 | eqeltri 2684 |
. . . . 5
⊢ 𝐵 ∈ V |
35 | 34, 34 | mpt2ex 7136 |
. . . 4
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))}) ∈ V |
36 | 31, 32, 35 | fvmpt 6191 |
. . 3
⊢ (𝐶 ∈ Cat →
(Sect‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
37 | 2, 36 | syl 17 |
. 2
⊢ (𝜑 → (Sect‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
38 | 1, 37 | syl5eq 2656 |
1
⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |