Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scott0f Structured version   Visualization version   GIF version

Theorem scott0f 33147
Description: A version of scott0 8632 with non-free variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scott0f.1 𝑦𝐴
scott0f.2 𝑥𝐴
Assertion
Ref Expression
scott0f (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scott0f
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scott0 8632 . 2 (𝐴 = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
2 scott0f.1 . . . . . . 7 𝑦𝐴
3 nfcv 2751 . . . . . . 7 𝑧𝐴
4 nfv 1830 . . . . . . 7 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
5 nfv 1830 . . . . . . 7 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
6 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
76sseq2d 3596 . . . . . . 7 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
82, 3, 4, 5, 7cbvralf 3141 . . . . . 6 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
98a1i 11 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
109rabbiia 3161 . . . 4 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
11 nfcv 2751 . . . . 5 𝑤𝐴
12 scott0f.2 . . . . 5 𝑥𝐴
13 nfv 1830 . . . . . 6 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1412, 13nfral 2929 . . . . 5 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
15 nfv 1830 . . . . 5 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
16 fveq2 6103 . . . . . . 7 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1716sseq1d 3595 . . . . . 6 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1817ralbidv 2969 . . . . 5 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
1911, 12, 14, 15, 18cbvrab 3171 . . . 4 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
2010, 19eqtr4i 2635 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
2120eqeq1i 2615 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
221, 21bitr4i 266 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wnfc 2738  wral 2896  {crab 2900  wss 3540  c0 3874  cfv 5804  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  scottn0f  33148
  Copyright terms: Public domain W3C validator