Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scott0f | Structured version Visualization version GIF version |
Description: A version of scott0 8632 with non-free variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scott0f.1 | ⊢ Ⅎ𝑦𝐴 |
scott0f.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scott0f | ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scott0 8632 | . 2 ⊢ (𝐴 = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) | |
2 | scott0f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2751 | . . . . . . 7 ⊢ Ⅎ𝑧𝐴 | |
4 | nfv 1830 | . . . . . . 7 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
5 | nfv 1830 | . . . . . . 7 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
6 | fveq2 6103 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
7 | 6 | sseq2d 3596 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
8 | 2, 3, 4, 5, 7 | cbvralf 3141 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
10 | 9 | rabbiia 3161 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
11 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑤𝐴 | |
12 | scott0f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
13 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
14 | 12, 13 | nfral 2929 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
15 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
16 | fveq2 6103 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
17 | 16 | sseq1d 3595 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
18 | 17 | ralbidv 2969 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
19 | 11, 12, 14, 15, 18 | cbvrab 3171 | . . . 4 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
20 | 10, 19 | eqtr4i 2635 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
21 | 20 | eqeq1i 2615 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) |
22 | 1, 21 | bitr4i 266 | 1 ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 Ⅎwnfc 2738 ∀wral 2896 {crab 2900 ⊆ wss 3540 ∅c0 3874 ‘cfv 5804 rankcrnk 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 |
This theorem is referenced by: scottn0f 33148 |
Copyright terms: Public domain | W3C validator |