Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrbis | Structured version Visualization version GIF version |
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sbrbis.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbrbis | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbi 2389 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒)) | |
2 | sbrbis.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
3 | 2 | bibi1i 327 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
4 | 1, 3 | bitri 263 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: sbrbif 2394 sbabel 2779 |
Copyright terms: Public domain | W3C validator |