Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbralie | Structured version Visualization version GIF version |
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
sbralie.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbralie | ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 3158 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
2 | 1 | sbbii 1874 | . . 3 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑥 / 𝑦]∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
3 | nfv 1830 | . . . 4 ⊢ Ⅎ𝑦∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 | |
4 | raleq 3115 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑)) | |
5 | 3, 4 | sbie 2396 | . . 3 ⊢ ([𝑥 / 𝑦]∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑) |
6 | 2, 5 | bitri 263 | . 2 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑) |
7 | cbvralsv 3158 | . . 3 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) | |
8 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
9 | 8 | sbco2 2403 | . . . . 5 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
10 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
11 | sbralie.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | sbie 2396 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
13 | 9, 12 | bitri 263 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ 𝜓) |
14 | 13 | ralbii 2963 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
15 | 7, 14 | bitri 263 | . 2 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
16 | 6, 15 | bitri 263 | 1 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 [wsb 1867 ∀wral 2896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 |
This theorem is referenced by: tfinds2 6955 |
Copyright terms: Public domain | W3C validator |