MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnfc2 Structured version   Visualization version   GIF version

Theorem sbnfc2 3959
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbnfc2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . 5 𝑦 ∈ V
2 csbtt 3510 . . . . 5 ((𝑦 ∈ V ∧ 𝑥𝐴) → 𝑦 / 𝑥𝐴 = 𝐴)
31, 2mpan 702 . . . 4 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝐴)
4 vex 3176 . . . . 5 𝑧 ∈ V
5 csbtt 3510 . . . . 5 ((𝑧 ∈ V ∧ 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝐴)
64, 5mpan 702 . . . 4 (𝑥𝐴𝑧 / 𝑥𝐴 = 𝐴)
73, 6eqtr4d 2647 . . 3 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
87alrimivv 1843 . 2 (𝑥𝐴 → ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
9 nfv 1830 . . 3 𝑤𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
10 eleq2 2677 . . . . . 6 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → (𝑤𝑦 / 𝑥𝐴𝑤𝑧 / 𝑥𝐴))
11 sbsbc 3406 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴[𝑦 / 𝑥]𝑤𝐴)
12 sbcel2 3941 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
1311, 12bitri 263 . . . . . 6 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
14 sbsbc 3406 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴[𝑧 / 𝑥]𝑤𝐴)
15 sbcel2 3941 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1614, 15bitri 263 . . . . . 6 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1710, 13, 163bitr4g 302 . . . . 5 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
18172alimi 1731 . . . 4 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
19 sbnf2 2427 . . . 4 (Ⅎ𝑥 𝑤𝐴 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
2018, 19sylibr 223 . . 3 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → Ⅎ𝑥 𝑤𝐴)
219, 20nfcd 2746 . 2 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑥𝐴)
228, 21impbii 198 1 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wal 1473   = wceq 1475  wnf 1699  [wsb 1867  wcel 1977  wnfc 2738  Vcvv 3173  [wsbc 3402  csb 3499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-nul 3875
This theorem is referenced by:  eusvnf  4787
  Copyright terms: Public domain W3C validator