Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbi2 | Structured version Visualization version GIF version |
Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbi2 | ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2379 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
2 | pm2.21 119 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 2 | sbimi 1873 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
4 | 1, 3 | sylbir 224 | . 2 ⊢ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
5 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
6 | 5 | sbimi 1873 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
7 | 4, 6 | ja 172 | 1 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: sbim 2383 |
Copyright terms: Public domain | W3C validator |