Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3518. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2614 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
2 | 1 | equsexvw 1919 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
3 | nfs1v 2425 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfbi 1821 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | sbequ12 2097 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 6 | bicomd 212 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
8 | sbhypf.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | sylan9bb 732 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
10 | 5, 9 | exlimi 2073 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
11 | 2, 10 | sylbir 224 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 Ⅎwnf 1699 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-cleq 2603 |
This theorem is referenced by: mob2 3353 reu2eqd 3370 cbvmptf 4676 ralxpf 5190 tfisi 6950 ac6sf 9194 nn0ind-raph 11353 ac6sf2 28810 nn0min 28954 ac6gf 32697 fdc1 32712 |
Copyright terms: Public domain | W3C validator |