MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypf Structured version   Visualization version   GIF version

Theorem sbhypf 3226
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3518. (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 eqeq1 2614 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
21equsexvw 1919 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
3 nfs1v 2425 . . . 4 𝑥[𝑦 / 𝑥]𝜑
4 sbhypf.1 . . . 4 𝑥𝜓
53, 4nfbi 1821 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
6 sbequ12 2097 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
76bicomd 212 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
8 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
97, 8sylan9bb 732 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
105, 9exlimi 2073 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
112, 10sylbir 224 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wnf 1699  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-cleq 2603
This theorem is referenced by:  mob2  3353  reu2eqd  3370  cbvmptf  4676  ralxpf  5190  tfisi  6950  ac6sf  9194  nn0ind-raph  11353  ac6sf2  28810  nn0min  28954  ac6gf  32697  fdc1  32712
  Copyright terms: Public domain W3C validator