Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbelx Structured version   Visualization version   GIF version

Theorem sbelx 2446
 Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbelx (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem sbelx
StepHypRef Expression
1 sbid2v 2445 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
2 sb5 2418 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
31, 2bitr3i 265 1 (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383  ∃wex 1695  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by:  pm13.196a  37637
 Copyright terms: Public domain W3C validator