Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot3 | Structured version Visualization version GIF version |
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbcrot3 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 3476 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑) | |
2 | sbccom 3476 | . . 3 ⊢ ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | |
3 | 2 | sbcbii 3458 | . 2 ⊢ ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
4 | 1, 3 | bitri 263 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 [wsbc 3402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 df-sbc 3403 |
This theorem is referenced by: sbcrot5 36374 2rexfrabdioph 36378 3rexfrabdioph 36379 4rexfrabdioph 36380 7rexfrabdioph 36382 |
Copyright terms: Public domain | W3C validator |