Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdvOLD Structured version   Visualization version   GIF version

Theorem sbcimdvOLD 3466
 Description: Obsolete proof of sbcimdv 3465 as of 7-Jul-2021. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
sbcimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcimdvOLD (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem sbcimdvOLD
StepHypRef Expression
1 sbcimdv.1 . . . 4 (𝜑 → (𝜓𝜒))
21alrimiv 1842 . . 3 (𝜑 → ∀𝑥(𝜓𝜒))
3 spsbc 3415 . . 3 (𝐴 ∈ V → (∀𝑥(𝜓𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
4 sbcim1 3449 . . 3 ([𝐴 / 𝑥](𝜓𝜒) → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
52, 3, 4syl56 35 . 2 (𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
6 sbcex 3412 . . . . 5 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
76con3i 149 . . . 4 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜓)
87pm2.21d 117 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
98a1d 25 . 2 𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
105, 9pm2.61i 175 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473   ∈ wcel 1977  Vcvv 3173  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator