Proof of Theorem sbcie3s
Step | Hyp | Ref
| Expression |
1 | | fvex 6113 |
. . 3
⊢ (𝐸‘𝑤) ∈ V |
2 | 1 | a1i 11 |
. 2
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) ∈ V) |
3 | | fvex 6113 |
. . . 4
⊢ (𝐹‘𝑤) ∈ V |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝐹‘𝑤) ∈ V) |
5 | | fvex 6113 |
. . . . 5
⊢ (𝐺‘𝑤) ∈ V |
6 | 5 | a1i 11 |
. . . 4
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → (𝐺‘𝑤) ∈ V) |
7 | | simpllr 795 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑤)) |
8 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) |
9 | 8 | ad3antrrr 762 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐸‘𝑤) = (𝐸‘𝑊)) |
10 | 7, 9 | eqtrd 2644 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑊)) |
11 | | sbcie3s.a |
. . . . . . 7
⊢ 𝐴 = (𝐸‘𝑊) |
12 | 10, 11 | syl6eqr 2662 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = 𝐴) |
13 | | simplr 788 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑤)) |
14 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) |
15 | 14 | ad3antrrr 762 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐹‘𝑤) = (𝐹‘𝑊)) |
16 | 13, 15 | eqtrd 2644 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑊)) |
17 | | sbcie3s.b |
. . . . . . 7
⊢ 𝐵 = (𝐹‘𝑊) |
18 | 16, 17 | syl6eqr 2662 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = 𝐵) |
19 | | simpr 476 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑤)) |
20 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐺‘𝑤) = (𝐺‘𝑊)) |
21 | 20 | ad3antrrr 762 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐺‘𝑤) = (𝐺‘𝑊)) |
22 | 19, 21 | eqtrd 2644 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑊)) |
23 | | sbcie3s.c |
. . . . . . 7
⊢ 𝐶 = (𝐺‘𝑊) |
24 | 22, 23 | syl6eqr 2662 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = 𝐶) |
25 | | sbcie3s.1 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) |
26 | 12, 18, 24, 25 | syl3anc 1318 |
. . . . 5
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜑 ↔ 𝜓)) |
27 | 26 | bicomd 212 |
. . . 4
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜓 ↔ 𝜑)) |
28 | 6, 27 | sbcied 3439 |
. . 3
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → ([(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
29 | 4, 28 | sbcied 3439 |
. 2
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → ([(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
30 | 2, 29 | sbcied 3439 |
1
⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |