Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbceqi | Structured version Visualization version GIF version |
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbceqi.1 | ⊢ 𝐴 ∈ V |
sbceqi.2 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 |
sbceqi.3 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 |
Ref | Expression |
---|---|
sbceqi | ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqi.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | sbceqg 3936 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | sbceqi.2 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | |
5 | sbceqi.3 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | |
6 | 4, 5 | eqeq12i 2624 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐷 = 𝐸) |
7 | 3, 6 | bitri 263 | 1 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 Vcvv 3173 [wsbc 3402 ⦋csb 3499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-sbc 3403 df-csb 3500 |
This theorem is referenced by: sbccom2lem 33099 |
Copyright terms: Public domain | W3C validator |