Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco3g Structured version   Visualization version   GIF version

Theorem sbcco3g 3951
 Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
Hypothesis
Ref Expression
sbcco3g.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
sbcco3g (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcco3g
StepHypRef Expression
1 sbcnestg 3949 . 2 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
2 elex 3185 . . 3 (𝐴𝑉𝐴 ∈ V)
3 nfcvd 2752 . . . 4 (𝐴 ∈ V → 𝑥𝐶)
4 sbcco3g.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
53, 4csbiegf 3523 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐶)
6 dfsbcq 3404 . . 3 (𝐴 / 𝑥𝐵 = 𝐶 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
72, 5, 63syl 18 . 2 (𝐴𝑉 → ([𝐴 / 𝑥𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
81, 7bitrd 267 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  Vcvv 3173  [wsbc 3402  ⦋csb 3499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500 This theorem is referenced by:  fzshftral  12297  2rexfrabdioph  36378  3rexfrabdioph  36379  4rexfrabdioph  36380  6rexfrabdioph  36381  7rexfrabdioph  36382
 Copyright terms: Public domain W3C validator