Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimaltle | Structured version Visualization version GIF version |
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimaltle.x | ⊢ Ⅎ𝑥𝜑 |
salpreimaltle.a | ⊢ Ⅎ𝑎𝜑 |
salpreimaltle.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimaltle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimaltle.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) |
salpreimaltle.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimaltle | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimaltle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimaltle.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimaleiinlt 39608 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
5 | salpreimaltle.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 12642 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 38536 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | simpl 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) | |
11 | simpl 472 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) | |
12 | nnrecre 10934 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
14 | 11, 13 | readdcld 9948 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
15 | 3, 14 | sylan 487 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
16 | salpreimaltle.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
17 | nfv 1830 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ | |
18 | 16, 17 | nfan 1816 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) |
19 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆 | |
20 | 18, 19 | nfim 1813 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
21 | ovex 6577 | . . . . 5 ⊢ (𝐶 + (1 / 𝑛)) ∈ V | |
22 | eleq1 2676 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ)) | |
23 | 22 | anbi2d 736 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ))) |
24 | breq2 4587 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎 ↔ 𝐵 < (𝐶 + (1 / 𝑛)))) | |
25 | 24 | rabbidv 3164 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | 25 | eleq1d 2672 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)) |
27 | 23, 26 | imbi12d 333 | . . . . 5 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))) |
28 | salpreimaltle.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) | |
29 | 20, 21, 27, 28 | vtoclf 3231 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
30 | 10, 15, 29 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
31 | 5, 7, 9, 30 | saliincl 39221 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
32 | 4, 31 | eqeltrd 2688 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 ≠ wne 2780 {crab 2900 ∅c0 3874 ∩ ciin 4456 class class class wbr 4583 (class class class)co 6549 ωcom 6957 ≼ cdom 7839 ℝcr 9814 1c1 9816 + caddc 9818 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 / cdiv 10563 ℕcn 10897 SAlgcsalg 39204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-card 8648 df-acn 8651 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-fl 12455 df-salg 39205 |
This theorem is referenced by: issmfle 39632 |
Copyright terms: Public domain | W3C validator |