Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimalegt | Structured version Visualization version GIF version |
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimalegt.x | ⊢ Ⅎ𝑥𝜑 |
salpreimalegt.a | ⊢ Ⅎ𝑎𝜑 |
salpreimalegt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimalegt.u | ⊢ 𝐴 = ∪ 𝑆 |
salpreimalegt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimalegt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) |
salpreimalegt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimalegt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimalegt.u | . . . . . 6 ⊢ 𝐴 = ∪ 𝑆 | |
2 | 1 | eqcomi 2619 | . . . . 5 ⊢ ∪ 𝑆 = 𝐴 |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = 𝐴) |
4 | 3 | difeq1d 3689 | . . 3 ⊢ (𝜑 → (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) |
5 | salpreimalegt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | salpreimalegt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
7 | salpreimalegt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
8 | 7 | rexrd 9968 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
9 | 5, 6, 8 | preimalegt 39590 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) |
10 | 4, 9 | eqtr2d 2645 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} = (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) |
11 | salpreimalegt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
12 | 7 | ancli 572 | . . . 4 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ ℝ)) |
13 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑎𝐶 | |
14 | salpreimalegt.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
15 | nfv 1830 | . . . . . . 7 ⊢ Ⅎ𝑎 𝐶 ∈ ℝ | |
16 | 14, 15 | nfan 1816 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝐶 ∈ ℝ) |
17 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆 | |
18 | 16, 17 | nfim 1813 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
19 | eleq1 2676 | . . . . . . 7 ⊢ (𝑎 = 𝐶 → (𝑎 ∈ ℝ ↔ 𝐶 ∈ ℝ)) | |
20 | 19 | anbi2d 736 | . . . . . 6 ⊢ (𝑎 = 𝐶 → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ 𝐶 ∈ ℝ))) |
21 | breq2 4587 | . . . . . . . 8 ⊢ (𝑎 = 𝐶 → (𝐵 ≤ 𝑎 ↔ 𝐵 ≤ 𝐶)) | |
22 | 21 | rabbidv 3164 | . . . . . . 7 ⊢ (𝑎 = 𝐶 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
23 | 22 | eleq1d 2672 | . . . . . 6 ⊢ (𝑎 = 𝐶 → ({𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆)) |
24 | 20, 23 | imbi12d 333 | . . . . 5 ⊢ (𝑎 = 𝐶 → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆))) |
25 | salpreimalegt.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) | |
26 | 13, 18, 24, 25 | vtoclgf 3237 | . . . 4 ⊢ (𝐶 ∈ ℝ → ((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆)) |
27 | 7, 12, 26 | sylc 63 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
28 | 11, 27 | saldifcld 39241 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) ∈ 𝑆) |
29 | 10, 28 | eqeltrd 2688 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 {crab 2900 ∖ cdif 3537 ∪ cuni 4372 class class class wbr 4583 ℝcr 9814 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 SAlgcsalg 39204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-xr 9957 df-le 9959 df-salg 39205 |
This theorem is referenced by: salpreimalelt 39615 issmfgt 39643 |
Copyright terms: Public domain | W3C validator |