Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salincl Structured version   Visualization version   GIF version

Theorem salincl 39219
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
salincl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem salincl
StepHypRef Expression
1 eqidd 2611 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸𝐹))
2 inss1 3795 . . . . . . . 8 (𝐸𝐹) ⊆ 𝐸
32a1i 11 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝐸)
4 elssuni 4403 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
54adantl 481 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸 𝑆)
63, 5sstrd 3578 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝑆)
7 dfss4 3820 . . . . . 6 ((𝐸𝐹) ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
86, 7sylib 207 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
98eqcomd 2616 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
1093adant3 1074 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
11 difindi 3840 . . . . 5 ( 𝑆 ∖ (𝐸𝐹)) = (( 𝑆𝐸) ∪ ( 𝑆𝐹))
1211difeq2i 3687 . . . 4 ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹)))
1312a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
141, 10, 133eqtrd 2648 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
15 simp1 1054 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
16 saldifcl 39215 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
17163adant3 1074 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐸) ∈ 𝑆)
18 saldifcl 39215 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
19183adant2 1073 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
20 saluncl 39213 . . . 4 ((𝑆 ∈ SAlg ∧ ( 𝑆𝐸) ∈ 𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
2115, 17, 19, 20syl3anc 1318 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
22 saldifcl 39215 . . 3 ((𝑆 ∈ SAlg ∧ (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2315, 21, 22syl2anc 691 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2414, 23eqeltrd 2688 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540   cuni 4372  SAlgcsalg 39204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-salg 39205
This theorem is referenced by:  saldifcl2  39222  salincld  39246
  Copyright terms: Public domain W3C validator