Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliincl Structured version   Visualization version   GIF version

Theorem saliincl 39221
 Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
saliincl.s (𝜑𝑆 ∈ SAlg)
saliincl.kct (𝜑𝐾 ≼ ω)
saliincl.kn0 (𝜑𝐾 ≠ ∅)
saliincl.e ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliincl (𝜑 𝑘𝐾 𝐸𝑆)
Distinct variable groups:   𝑘,𝐾   𝑆,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem saliincl
StepHypRef Expression
1 saliincl.e . . . . . . . 8 ((𝜑𝑘𝐾) → 𝐸𝑆)
2 elssuni 4403 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
31, 2syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → 𝐸 𝑆)
4 df-ss 3554 . . . . . . 7 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
53, 4sylib 207 . . . . . 6 ((𝜑𝑘𝐾) → (𝐸 𝑆) = 𝐸)
65eqcomd 2616 . . . . 5 ((𝜑𝑘𝐾) → 𝐸 = (𝐸 𝑆))
7 incom 3767 . . . . . 6 (𝐸 𝑆) = ( 𝑆𝐸)
87a1i 11 . . . . 5 ((𝜑𝑘𝐾) → (𝐸 𝑆) = ( 𝑆𝐸))
9 dfin4 3826 . . . . . 6 ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸))
109a1i 11 . . . . 5 ((𝜑𝑘𝐾) → ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸)))
116, 8, 103eqtrd 2648 . . . 4 ((𝜑𝑘𝐾) → 𝐸 = ( 𝑆 ∖ ( 𝑆𝐸)))
1211iineq2dv 4479 . . 3 (𝜑 𝑘𝐾 𝐸 = 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)))
13 saliincl.kn0 . . . 4 (𝜑𝐾 ≠ ∅)
14 iindif2 4525 . . . 4 (𝐾 ≠ ∅ → 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1513, 14syl 17 . . 3 (𝜑 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1612, 15eqtrd 2644 . 2 (𝜑 𝑘𝐾 𝐸 = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
17 saliincl.s . . 3 (𝜑𝑆 ∈ SAlg)
18 saliincl.kct . . . 4 (𝜑𝐾 ≼ ω)
1917adantr 480 . . . . 5 ((𝜑𝑘𝐾) → 𝑆 ∈ SAlg)
20 saldifcl 39215 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
2119, 1, 20syl2anc 691 . . . 4 ((𝜑𝑘𝐾) → ( 𝑆𝐸) ∈ 𝑆)
2217, 18, 21saliuncl 39218 . . 3 (𝜑 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆)
23 saldifcl 39215 . . 3 ((𝑆 ∈ SAlg ∧ 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆) → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2417, 22, 23syl2anc 691 . 2 (𝜑 → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2516, 24eqeltrd 2688 1 (𝜑 𝑘𝐾 𝐸𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ∪ cuni 4372  ∪ ciun 4455  ∩ ciin 4456   class class class wbr 4583  ωcom 6957   ≼ cdom 7839  SAlgcsalg 39204 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-card 8648  df-acn 8651  df-salg 39205 This theorem is referenced by:  iocborel  39250  hoimbllem  39520  iccvonmbllem  39569  salpreimagtge  39611  salpreimaltle  39612  issmfltle  39622  smflimlem1  39657
 Copyright terms: Public domain W3C validator