Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgranumwlkb0 Structured version   Visualization version   GIF version

Theorem rusgranumwlkb0 26480
 Description: Induction base 0 for rusgranumwlk 26484. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.)
Hypotheses
Ref Expression
rusgranumwlk.w 𝑊 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑐)) = 𝑛})
rusgranumwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
Assertion
Ref Expression
rusgranumwlkb0 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝐸,𝑐,𝑛   𝑉,𝑐,𝑛   𝑤,𝑣   𝑃,𝑛,𝑣,𝑤   𝑣,𝑉   𝑛,𝑊,𝑣,𝑤   𝑤,𝑉,𝑐   𝑣,𝐸,𝑤
Allowed substitution hints:   𝑃(𝑐)   𝐿(𝑤,𝑣,𝑛,𝑐)   𝑊(𝑐)

Proof of Theorem rusgranumwlkb0
StepHypRef Expression
1 0nn0 11184 . . 3 0 ∈ ℕ0
2 rusgranumwlk.w . . . 4 𝑊 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑐)) = 𝑛})
3 rusgranumwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
42, 3rusgranumwlklem4 26479 . . 3 ((𝑉 USGrph 𝐸𝑃𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃}))
51, 4mp3an3 1405 . 2 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑃𝐿0) = (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃}))
6 df-rab 2905 . . . . 5 {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∧ (𝑤‘0) = 𝑃)}
76a1i 11 . . . 4 ((𝑉 USGrph 𝐸𝑃𝑉) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∧ (𝑤‘0) = 𝑃)})
8 usgrav 25867 . . . . . . . . . 10 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
98adantr 480 . . . . . . . . 9 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑉 ∈ V ∧ 𝐸 ∈ V))
10 wwlkn0s 26233 . . . . . . . . 9 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉 WWalksN 𝐸)‘0) = {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = 1})
119, 10syl 17 . . . . . . . 8 ((𝑉 USGrph 𝐸𝑃𝑉) → ((𝑉 WWalksN 𝐸)‘0) = {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = 1})
1211eleq2d 2673 . . . . . . 7 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ↔ 𝑤 ∈ {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = 1}))
13 rabid 3095 . . . . . . 7 (𝑤 ∈ {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = 1} ↔ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1))
1412, 13syl6bb 275 . . . . . 6 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ↔ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1)))
1514anbi1d 737 . . . . 5 ((𝑉 USGrph 𝐸𝑃𝑉) → ((𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)))
1615abbidv 2728 . . . 4 ((𝑉 USGrph 𝐸𝑃𝑉) → {𝑤 ∣ (𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∧ (𝑤‘0) = 𝑃)} = {𝑤 ∣ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)})
17 wrdl1s1 13247 . . . . . . . 8 (𝑃𝑉 → (𝑣 = ⟨“𝑃”⟩ ↔ (𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
18 df-3an 1033 . . . . . . . 8 ((𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1917, 18syl6rbb 276 . . . . . . 7 (𝑃𝑉 → (((𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟨“𝑃”⟩))
20 vex 3176 . . . . . . . 8 𝑣 ∈ V
21 eleq1 2676 . . . . . . . . . 10 (𝑤 = 𝑣 → (𝑤 ∈ Word 𝑉𝑣 ∈ Word 𝑉))
22 fveq2 6103 . . . . . . . . . . 11 (𝑤 = 𝑣 → (#‘𝑤) = (#‘𝑣))
2322eqeq1d 2612 . . . . . . . . . 10 (𝑤 = 𝑣 → ((#‘𝑤) = 1 ↔ (#‘𝑣) = 1))
2421, 23anbi12d 743 . . . . . . . . 9 (𝑤 = 𝑣 → ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ↔ (𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1)))
25 fveq1 6102 . . . . . . . . . 10 (𝑤 = 𝑣 → (𝑤‘0) = (𝑣‘0))
2625eqeq1d 2612 . . . . . . . . 9 (𝑤 = 𝑣 → ((𝑤‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2724, 26anbi12d 743 . . . . . . . 8 (𝑤 = 𝑣 → (((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2820, 27elab 3319 . . . . . . 7 (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ ((𝑣 ∈ Word 𝑉 ∧ (#‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
29 velsn 4141 . . . . . . 7 (𝑣 ∈ {⟨“𝑃”⟩} ↔ 𝑣 = ⟨“𝑃”⟩)
3019, 28, 293bitr4g 302 . . . . . 6 (𝑃𝑉 → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
3130eqrdv 2608 . . . . 5 (𝑃𝑉 → {𝑤 ∣ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
3231adantl 481 . . . 4 ((𝑉 USGrph 𝐸𝑃𝑉) → {𝑤 ∣ ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
337, 16, 323eqtrd 2648 . . 3 ((𝑉 USGrph 𝐸𝑃𝑉) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃} = {⟨“𝑃”⟩})
3433fveq2d 6107 . 2 ((𝑉 USGrph 𝐸𝑃𝑉) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘0) ∣ (𝑤‘0) = 𝑃}) = (#‘{⟨“𝑃”⟩}))
35 s1cl 13235 . . . 4 (𝑃𝑉 → ⟨“𝑃”⟩ ∈ Word 𝑉)
36 hashsng 13020 . . . 4 (⟨“𝑃”⟩ ∈ Word 𝑉 → (#‘{⟨“𝑃”⟩}) = 1)
3735, 36syl 17 . . 3 (𝑃𝑉 → (#‘{⟨“𝑃”⟩}) = 1)
3837adantl 481 . 2 ((𝑉 USGrph 𝐸𝑃𝑉) → (#‘{⟨“𝑃”⟩}) = 1)
395, 34, 383eqtrd 2648 1 ((𝑉 USGrph 𝐸𝑃𝑉) → (𝑃𝐿0) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596  {crab 2900  Vcvv 3173  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  0cc0 9815  1c1 9816  ℕ0cn0 11169  #chash 12979  Word cword 13146  ⟨“cs1 13149   USGrph cusg 25859   Walks cwalk 26026   WWalksN cwwlkn 26206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-s1 13157  df-usgra 25862  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208 This theorem is referenced by:  rusgranumwlk  26484
 Copyright terms: Public domain W3C validator