MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Structured version   Visualization version   GIF version

Theorem ruclem7 14804
Description: Lemma for ruc 14811. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem7 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 476 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2698 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 12678 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
6 ruc.5 . . . 4 𝐺 = seq0(𝐷, 𝐶)
76fveq1i 6104 . . 3 (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1))
86fveq1i 6104 . . . 4 (𝐺𝑁) = (seq0(𝐷, 𝐶)‘𝑁)
98oveq1i 6559 . . 3 ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))
105, 7, 93eqtr4g 2669 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))))
11 nn0p1nn 11209 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1211adantl 481 . . . . . 6 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
1312nnne0d 10942 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0)
1413necomd 2837 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1))
15 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
1615equncomi 3721 . . . . . 6 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
1716fveq1i 6104 . . . . 5 (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1))
18 fvunsn 6350 . . . . 5 (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
1917, 18syl5eq 2656 . . . 4 (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2014, 19syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2120oveq2d 6565 . 2 ((𝜑𝑁 ∈ ℕ0) → ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
2210, 21eqtrd 2644 1 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  csb 3499  cun 3538  ifcif 4036  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cuz 11563  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664
This theorem is referenced by:  ruclem8  14805  ruclem9  14806  ruclem12  14809
  Copyright terms: Public domain W3C validator