Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcedeq1vd | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3289 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspcedeq1vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedeqvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
3 | 2 | eqeq1d 2612 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐷 = 𝐷)) |
4 | eqidd 2611 | . 2 ⊢ (𝜑 → 𝐷 = 𝐷) | |
5 | 1, 3, 4 | rspcedvd 3289 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 |
This theorem is referenced by: mod2eq1n2dvds 14909 |
Copyright terms: Public domain | W3C validator |