Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspceaov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3295 for operation values, analogous to rspceov 6590. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
rspceaov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐹 = 𝐹) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
3 | eqidd 2611 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑦 = 𝑦) | |
4 | 1, 2, 3 | aoveq123d 39907 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) ) |
5 | 4 | eqeq2d 2620 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) )) |
6 | eqidd 2611 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐹 = 𝐹) | |
7 | eqidd 2611 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐶 = 𝐶) | |
8 | id 22 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝑦 = 𝐷) | |
9 | 6, 7, 8 | aoveq123d 39907 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) ) |
10 | 9 | eqeq2d 2620 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) )) |
11 | 5, 10 | rspc2ev 3295 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ((caov 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-res 5050 df-iota 5768 df-fun 5806 df-fv 5812 df-dfat 39845 df-afv 39846 df-aov 39847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |