MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   GIF version

Theorem rrxprds 22985
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxprds (𝐼𝑉𝐻 = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 22983 . 2 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
3 refld 19784 . . . . 5 fld ∈ Field
4 eqid 2610 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
5 eqid 2610 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5frlmpws 19913 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
73, 6mpan 702 . . . 4 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
8 fvex 6113 . . . . . . 7 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
9 rlmval 19012 . . . . . . . . . 10 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
10 rebase 19771 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
1110fveq2i 6106 . . . . . . . . . 10 ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
129, 11eqtr4i 2635 . . . . . . . . 9 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ)
1312oveq1i 6559 . . . . . . . 8 ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼)
1410ressid 15762 . . . . . . . . . 10 (ℝfld ∈ Field → (ℝflds ℝ) = ℝfld)
153, 14ax-mp 5 . . . . . . . . 9 (ℝflds ℝ) = ℝfld
16 eqidd 2611 . . . . . . . . . . 11 (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
1710eqimssi 3622 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
1817a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ (Base‘ℝfld))
1916, 18srasca 19002 . . . . . . . . . 10 (⊤ → (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)))
2019trud 1484 . . . . . . . . 9 (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2115, 20eqtr3i 2634 . . . . . . . 8 fld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2213, 21pwsval 15969 . . . . . . 7 ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
238, 22mpan 702 . . . . . 6 (𝐼𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2423eqcomd 2616 . . . . 5 (𝐼𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼))
252fveq2d 6107 . . . . . 6 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼))))
26 rrxbase.b . . . . . 6 𝐵 = (Base‘𝐻)
27 eqid 2610 . . . . . . 7 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
2827, 5tchbas 22826 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂHil‘(ℝfld freeLMod 𝐼)))
2925, 26, 283eqtr4g 2669 . . . . 5 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
3024, 29oveq12d 6567 . . . 4 (𝐼𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
317, 30eqtr4d 2647 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
3231fveq2d 6107 . 2 (𝐼𝑉 → (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
332, 32eqtrd 2644 1 (𝐼𝑉𝐻 = (toℂHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173  wss 3540  {csn 4125   × cxp 5036  cfv 5804  (class class class)co 6549  cr 9814  Basecbs 15695  s cress 15696  Scalarcsca 15771  Xscprds 15929  s cpws 15930  Fieldcfield 18571  subringAlg csra 18989  ringLModcrglmod 18990  fldcrefld 19769   freeLMod cfrlm 19909  toℂHilctch 22775  ℝ^crrx 22979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-field 18573  df-subrg 18601  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-refld 19770  df-dsmm 19895  df-frlm 19910  df-tng 22199  df-tch 22777  df-rrx 22981
This theorem is referenced by:  rrxip  22986
  Copyright terms: Public domain W3C validator