Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxbasefi | Structured version Visualization version GIF version |
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑𝑚 𝑋) for the development of the Lebeasgue measure theory for n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rrxbasefi.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
rrxbasefi.h | ⊢ 𝐻 = (ℝ^‘𝑋) |
rrxbasefi.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxbasefi | ⊢ (𝜑 → 𝐵 = (ℝ ↑𝑚 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxbasefi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | rrxbasefi.h | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝑋) | |
3 | rrxbasefi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
4 | 2, 3 | rrxbase 22984 | . . . 4 ⊢ (𝑋 ∈ Fin → 𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
6 | ssrab2 3650 | . . . 4 ⊢ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝑋) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝑋)) |
8 | 5, 7 | eqsstrd 3602 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) |
9 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ (ℝ ↑𝑚 𝑋)) | |
10 | elmapi 7765 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℝ ↑𝑚 𝑋) → 𝑓:𝑋⟶ℝ) | |
11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓:𝑋⟶ℝ) |
12 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑋 ∈ Fin) |
13 | c0ex 9913 | . . . . . . . . 9 ⊢ 0 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 0 ∈ V) |
15 | 11, 12, 14 | fdmfifsupp 8168 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 finSupp 0) |
16 | 9, 15 | jca 553 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → (𝑓 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 finSupp 0)) |
17 | rabid 3095 | . . . . . 6 ⊢ (𝑓 ∈ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} ↔ (𝑓 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑓 finSupp 0)) | |
18 | 16, 17 | sylibr 223 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0}) |
19 | 5 | eqcomd 2616 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → {𝑓 ∈ (ℝ ↑𝑚 𝑋) ∣ 𝑓 finSupp 0} = 𝐵) |
21 | 18, 20 | eleqtrd 2690 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℝ ↑𝑚 𝑋)) → 𝑓 ∈ 𝐵) |
22 | 21 | ralrimiva 2949 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (ℝ ↑𝑚 𝑋)𝑓 ∈ 𝐵) |
23 | dfss3 3558 | . . 3 ⊢ ((ℝ ↑𝑚 𝑋) ⊆ 𝐵 ↔ ∀𝑓 ∈ (ℝ ↑𝑚 𝑋)𝑓 ∈ 𝐵) | |
24 | 22, 23 | sylibr 223 | . 2 ⊢ (𝜑 → (ℝ ↑𝑚 𝑋) ⊆ 𝐵) |
25 | 8, 24 | eqssd 3585 | 1 ⊢ (𝜑 → 𝐵 = (ℝ ↑𝑚 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 ⊆ wss 3540 class class class wbr 4583 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 finSupp cfsupp 8158 ℝcr 9814 0cc0 9815 Basecbs 15695 ℝ^crrx 22979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-fz 12198 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-0g 15925 df-prds 15931 df-pws 15933 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-subg 17414 df-cmn 18018 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-field 18573 df-subrg 18601 df-sra 18993 df-rgmod 18994 df-cnfld 19568 df-refld 19770 df-dsmm 19895 df-frlm 19910 df-tng 22199 df-tch 22777 df-rrx 22981 |
This theorem is referenced by: rrxdsfi 39181 rrxtopnfi 39182 rrxmetfi 39183 rrxtoponfi 39187 qndenserrnopnlem 39193 qndenserrn 39195 rrnprjdstle 39197 |
Copyright terms: Public domain | W3C validator |