Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhre Structured version   Visualization version   GIF version

Theorem rrhre 29393
 Description: The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
rrhre (ℝHom‘ℝfld) = ( I ↾ ℝ)

Proof of Theorem rrhre
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniretop 22376 . . 3 ℝ = (topGen‘ran (,))
2 rehaus 22410 . . . 4 (topGen‘ran (,)) ∈ Haus
32a1i 11 . . 3 (⊤ → (topGen‘ran (,)) ∈ Haus)
4 rerrext 29381 . . . 4 fld ∈ ℝExt
5 eqid 2610 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
6 retopn 22975 . . . . 5 (topGen‘ran (,)) = (TopOpen‘ℝfld)
75, 6rrhcne 29385 . . . 4 (ℝfld ∈ ℝExt → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
84, 7mp1i 13 . . 3 (⊤ → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
9 retop 22375 . . . . . 6 (topGen‘ran (,)) ∈ Top
101toptopon 20548 . . . . . 6 ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ))
119, 10mpbi 219 . . . . 5 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
12 idcn 20871 . . . . 5 ((topGen‘ran (,)) ∈ (TopOn‘ℝ) → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
1311, 12ax-mp 5 . . . 4 ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))
1413a1i 11 . . 3 (⊤ → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
159a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Top)
16 f1oi 6086 . . . . . . . . . 10 ( I ↾ ℚ):ℚ–1-1-onto→ℚ
17 f1of 6050 . . . . . . . . . 10 (( I ↾ ℚ):ℚ–1-1-onto→ℚ → ( I ↾ ℚ):ℚ⟶ℚ)
1816, 17ax-mp 5 . . . . . . . . 9 ( I ↾ ℚ):ℚ⟶ℚ
19 qssre 11674 . . . . . . . . 9 ℚ ⊆ ℝ
20 fss 5969 . . . . . . . . 9 ((( I ↾ ℚ):ℚ⟶ℚ ∧ ℚ ⊆ ℝ) → ( I ↾ ℚ):ℚ⟶ℝ)
2118, 19, 20mp2an 704 . . . . . . . 8 ( I ↾ ℚ):ℚ⟶ℝ
2221a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ):ℚ⟶ℝ)
2319a1i 11 . . . . . . 7 (⊤ → ℚ ⊆ ℝ)
24 qdensere 22383 . . . . . . . 8 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
2524a1i 11 . . . . . . 7 (⊤ → ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)
269a1i 11 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (topGen‘ran (,)) ∈ Top)
27 simplr 788 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ (topGen‘ran (,)))
28 simpr 476 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑥𝑎)
29 opnneip 20733 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ∈ Top ∧ 𝑎 ∈ (topGen‘ran (,)) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
3026, 27, 28, 29syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
31 fvex 6113 . . . . . . . . . . . . . . . 16 ((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V
32 qex 11676 . . . . . . . . . . . . . . . 16 ℚ ∈ V
33 elrestr 15912 . . . . . . . . . . . . . . . 16 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V ∧ ℚ ∈ V ∧ 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥})) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3431, 32, 33mp3an12 1406 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3530, 34syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
36 inss2 3796 . . . . . . . . . . . . . . . . 17 (𝑎 ∩ ℚ) ⊆ ℚ
37 resiima 5399 . . . . . . . . . . . . . . . . 17 ((𝑎 ∩ ℚ) ⊆ ℚ → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ))
3836, 37ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ)
39 inss1 3795 . . . . . . . . . . . . . . . 16 (𝑎 ∩ ℚ) ⊆ 𝑎
4038, 39eqsstri 3598 . . . . . . . . . . . . . . 15 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎
4140a1i 11 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎)
42 imaeq2 5381 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑎 ∩ ℚ) → (( I ↾ ℚ) “ 𝑏) = (( I ↾ ℚ) “ (𝑎 ∩ ℚ)))
4342sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑏 = (𝑎 ∩ ℚ) → ((( I ↾ ℚ) “ 𝑏) ⊆ 𝑎 ↔ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎))
4443rspcev 3282 . . . . . . . . . . . . . 14 (((𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∧ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4535, 41, 44syl2anc 691 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4645ex 449 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) → (𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4746ralrimiva 2949 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4847ancli 572 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)))
4924eleq2i 2680 . . . . . . . . . . . . 13 (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ 𝑥 ∈ ℝ)
5049biimpri 217 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
51 trnei 21506 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ℚ ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5211, 19, 51mp3an12 1406 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5350, 52mpbid 221 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ))
54 isflf 21607 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) ∧ ( I ↾ ℚ):ℚ⟶ℝ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5511, 21, 54mp3an13 1407 . . . . . . . . . . 11 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5653, 55syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5748, 56mpbird 246 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)))
58 ne0i 3880 . . . . . . . . 9 (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
5957, 58syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
6059adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
61 recusp 22978 . . . . . . . . . 10 fld ∈ CUnifSp
62 cuspusp 21914 . . . . . . . . . 10 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
6361, 62ax-mp 5 . . . . . . . . 9 fld ∈ UnifSp
646uspreg 21888 . . . . . . . . 9 ((ℝfld ∈ UnifSp ∧ (topGen‘ran (,)) ∈ Haus) → (topGen‘ran (,)) ∈ Reg)
6563, 2, 64mp2an 704 . . . . . . . 8 (topGen‘ran (,)) ∈ Reg
6665a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Reg)
67 resabs1 5347 . . . . . . . . . 10 (ℚ ⊆ ℝ → (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ))
6819, 67ax-mp 5 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ)
691cnrest 20899 . . . . . . . . . 10 ((( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ ℚ ⊆ ℝ) → (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
7013, 19, 69mp2an 704 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7168, 70eqeltrri 2685 . . . . . . . 8 ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7271a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
731, 1, 15, 3, 22, 23, 25, 60, 66, 72cnextfres1 21682 . . . . . 6 (⊤ → ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ))
7473trud 1484 . . . . 5 ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ)
75 recms 22976 . . . . . . . . 9 fld ∈ CMetSp
7675elexi 3186 . . . . . . . 8 fld ∈ V
775, 6rrhval 29368 . . . . . . . 8 (ℝfld ∈ V → (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)))
7876, 77ax-mp 5 . . . . . . 7 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld))
79 qqhre 29392 . . . . . . . 8 (ℚHom‘ℝfld) = ( I ↾ ℚ)
8079fveq2i 6106 . . . . . . 7 (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8178, 80eqtri 2632 . . . . . 6 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8281reseq1i 5313 . . . . 5 ((ℝHom‘ℝfld) ↾ ℚ) = ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ)
8374, 82, 683eqtr4i 2642 . . . 4 ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ)
8483a1i 11 . . 3 (⊤ → ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ))
851, 3, 8, 14, 84, 23, 25hauseqcn 29269 . 2 (⊤ → (ℝHom‘ℝfld) = ( I ↾ ℝ))
8685trud 1484 1 (ℝHom‘ℝfld) = ( I ↾ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125   I cid 4948  ran crn 5039   ↾ cres 5040   “ cima 5041  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  ℚcq 11664  (,)cioo 12046   ↾t crest 15904  topGenctg 15921  ℝfldcrefld 19769  Topctop 20517  TopOnctopon 20518  clsccl 20632  neicnei 20711   Cn ccn 20838  Hauscha 20922  Regcreg 20923  Filcfil 21459   fLimf cflf 21549  CnExtccnext 21673  UnifSpcusp 21868  CUnifSpccusp 21911  CMetSpccms 22937  ℚHomcqqh 29344  ℝHomcrrh 29365   ℝExt crrext 29366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-gz 15472  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-toset 16857  df-ps 17023  df-tsr 17024  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-od 17771  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-abv 18640  df-lmod 18688  df-nzr 19079  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-metu 19566  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zlm 19672  df-chr 19673  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-haus 20929  df-reg 20930  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-cnext 21674  df-ust 21814  df-utop 21845  df-uss 21870  df-usp 21871  df-ucn 21890  df-cfilu 21901  df-cusp 21912  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-omnd 29030  df-ogrp 29031  df-orng 29128  df-ofld 29129  df-qqh 29345  df-rrh 29367  df-rrext 29371 This theorem is referenced by:  sitmcl  29740
 Copyright terms: Public domain W3C validator