Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version |
Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
rrexttps | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg 29373 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
2 | nrgngp 22276 | . . 3 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 22215 | . . 3 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp) |
5 | xmstps 22068 | . 2 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 TopSpctps 20519 ∞MetSpcxme 21932 NrmGrpcngp 22192 NrmRingcnrg 22194 ℝExt crrext 29366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-co 5047 df-res 5050 df-iota 5768 df-fv 5812 df-xms 21935 df-ms 21936 df-ngp 22198 df-nrg 22200 df-rrext 29371 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |