Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 29378
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 29373 . . 3 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 22276 . . 3 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 22215 . . 3 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp)
5 xmstps 22068 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
64, 5syl 17 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  TopSpctps 20519  ∞MetSpcxme 21932  NrmGrpcngp 22192  NrmRingcnrg 22194   ℝExt crrext 29366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-co 5047  df-res 5050  df-iota 5768  df-fv 5812  df-xms 21935  df-ms 21936  df-ngp 22198  df-nrg 22200  df-rrext 29371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator