Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextcusp | Structured version Visualization version GIF version |
Description: An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextcusp | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2610 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | eqid 2610 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 29372 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp3bi 1071 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))) |
6 | 5 | simpld 474 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 × cxp 5036 ↾ cres 5040 ‘cfv 5804 0cc0 9815 Basecbs 15695 distcds 15777 DivRingcdr 18570 metUnifcmetu 19558 ℤModczlm 19668 chrcchr 19669 UnifStcuss 21867 CUnifSpccusp 21911 NrmRingcnrg 22194 NrmModcnlm 22195 ℝExt crrext 29366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-res 5050 df-iota 5768 df-fv 5812 df-rrext 29371 |
This theorem is referenced by: rrhfe 29384 rrhcne 29385 sitgclg 29731 |
Copyright terms: Public domain | W3C validator |