Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem5 Structured version   Visualization version   GIF version

Theorem rpnnen2lem5 14786
 Description: Lemma for rpnnen2 14794. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem5 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑀,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
2 1nn 10908 . . . . 5 1 ∈ ℕ
32a1i 11 . . . 4 (𝐴 ⊆ ℕ → 1 ∈ ℕ)
4 ssid 3587 . . . . . 6 ℕ ⊆ ℕ
5 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
65rpnnen2lem2 14783 . . . . . 6 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
74, 6mp1i 13 . . . . 5 (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
87ffvelrnda 6267 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
95rpnnen2lem2 14783 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
109ffvelrnda 6267 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
115rpnnen2lem3 14784 . . . . 5 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
12 seqex 12665 . . . . . 6 seq1( + , (𝐹‘ℕ)) ∈ V
13 ovex 6577 . . . . . 6 (1 / 2) ∈ V
1412, 13breldm 5251 . . . . 5 (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
1511, 14mp1i 13 . . . 4 (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
16 elnnuz 11600 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
175rpnnen2lem4 14785 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
184, 17mp3an2 1404 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
1916, 18sylan2br 492 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2019simpld 474 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝐹𝐴)‘𝑘))
2119simprd 478 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))
221, 3, 8, 10, 15, 20, 21cvgcmp 14389 . . 3 (𝐴 ⊆ ℕ → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
2322adantr 480 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
24 simpr 476 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2510adantlr 747 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
2625recnd 9947 . . 3 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℂ)
271, 24, 26iserex 14235 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ ))
2823, 27mpbid 221 1 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   ≤ cle 9954   / cdiv 10563  ℕcn 10897  2c2 10947  3c3 10948  ℤ≥cuz 11563  seqcseq 12663  ↑cexp 12722   ⇝ cli 14063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265 This theorem is referenced by:  rpnnen2lem6  14787  rpnnen2lem7  14788  rpnnen2lem8  14789  rpnnen2lem9  14790  rpnnen2lem12  14793
 Copyright terms: Public domain W3C validator