MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem12 Structured version   Visualization version   GIF version

Theorem rpnnen2lem12 14793
Description: Lemma for rpnnen2 14794. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem12 𝒫 ℕ ≼ (0[,]1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem12
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . 2 (0[,]1) ∈ V
2 elpwi 4117 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ)
3 nnuz 11599 . . . . . . 7 ℕ = (ℤ‘1)
43sumeq1i 14276 . . . . . 6 Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘)
5 1nn 10908 . . . . . . 7 1 ∈ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem6 14787 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
85, 7mpan2 703 . . . . . 6 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
94, 8syl5eqel 2692 . . . . 5 (𝑦 ⊆ ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
102, 9syl 17 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
11 1zzd 11285 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ)
12 eqidd 2611 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝑘))
136rpnnen2lem2 14783 . . . . . . 7 (𝑦 ⊆ ℕ → (𝐹𝑦):ℕ⟶ℝ)
142, 13syl 17 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → (𝐹𝑦):ℕ⟶ℝ)
1514ffvelrnda 6267 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) ∈ ℝ)
166rpnnen2lem5 14786 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
172, 5, 16sylancl 693 . . . . 5 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
18 ssid 3587 . . . . . . . 8 ℕ ⊆ ℕ
196rpnnen2lem4 14785 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2018, 19mp3an2 1404 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2120simpld 474 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
222, 21sylan 487 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
233, 11, 12, 15, 17, 22isumge0 14339 . . . 4 (𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
24 halfre 11123 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ∈ ℝ)
26 1re 9918 . . . . . 6 1 ∈ ℝ
2726a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ)
286rpnnen2lem7 14788 . . . . . . . . 9 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
2918, 5, 28mp3an23 1408 . . . . . . . 8 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
302, 29syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
31 eqid 2610 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
32 eqidd 2611 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘))
33 elnnuz 11600 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
346rpnnen2lem2 14783 . . . . . . . . . . . . 13 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
3518, 34ax-mp 5 . . . . . . . . . . . 12 (𝐹‘ℕ):ℕ⟶ℝ
3635ffvelrni 6266 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
3736recnd 9947 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3833, 37sylbir 224 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3938adantl 481 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
406rpnnen2lem3 14784 . . . . . . . . 9 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
4140a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2))
4231, 11, 32, 39, 41isumclim 14330 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2))
4330, 42breqtrd 4609 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ (1 / 2))
444, 43syl5eqbr 4618 . . . . 5 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ (1 / 2))
45 halflt1 11127 . . . . . . 7 (1 / 2) < 1
4624, 26, 45ltleii 10039 . . . . . 6 (1 / 2) ≤ 1
4746a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ≤ 1)
4810, 25, 27, 44, 47letrd 10073 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1)
49 0re 9919 . . . . 5 0 ∈ ℝ
5049, 26elicc2i 12110 . . . 4 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1))
5110, 23, 48, 50syl3anbrc 1239 . . 3 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1))
52 elpwi 4117 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ)
53 ssdifss 3703 . . . . . . . . . . . 12 (𝑦 ⊆ ℕ → (𝑦𝑧) ⊆ ℕ)
54 ssdifss 3703 . . . . . . . . . . . 12 (𝑧 ⊆ ℕ → (𝑧𝑦) ⊆ ℕ)
55 unss 3749 . . . . . . . . . . . . 13 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5655biimpi 205 . . . . . . . . . . . 12 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5753, 54, 56syl2an 493 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
582, 52, 57syl2an 493 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
59 eqss 3583 . . . . . . . . . . . . 13 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
60 ssdif0 3896 . . . . . . . . . . . . . 14 (𝑦𝑧 ↔ (𝑦𝑧) = ∅)
61 ssdif0 3896 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑧𝑦) = ∅)
6260, 61anbi12i 729 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝑦) ↔ ((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅))
63 un00 3963 . . . . . . . . . . . . 13 (((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6459, 62, 633bitri 285 . . . . . . . . . . . 12 (𝑦 = 𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6564necon3bii 2834 . . . . . . . . . . 11 (𝑦𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
6665biimpi 205 . . . . . . . . . 10 (𝑦𝑧 → ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
67 nnwo 11629 . . . . . . . . . 10 ((((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ ∧ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6858, 66, 67syl2an 493 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑦𝑧) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6968ex 449 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛))
7058sselda 3568 . . . . . . . . . 10 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → 𝑚 ∈ ℕ)
71 df-ral 2901 . . . . . . . . . . . 12 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛))
72 con34b 305 . . . . . . . . . . . . . 14 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))))
73 eldif 3550 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑦𝑧) ↔ (𝑛𝑦 ∧ ¬ 𝑛𝑧))
74 eldif 3550 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑧𝑦) ↔ (𝑛𝑧 ∧ ¬ 𝑛𝑦))
7573, 74orbi12i 542 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
76 elun 3715 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)))
77 xor 931 . . . . . . . . . . . . . . . . 17 (¬ (𝑛𝑦𝑛𝑧) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
7875, 76, 773bitr4ri 292 . . . . . . . . . . . . . . . 16 (¬ (𝑛𝑦𝑛𝑧) ↔ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)))
7978con1bii 345 . . . . . . . . . . . . . . 15 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛𝑦𝑛𝑧))
8079imbi2i 325 . . . . . . . . . . . . . 14 ((¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8172, 80bitri 263 . . . . . . . . . . . . 13 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8281albii 1737 . . . . . . . . . . . 12 (∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8371, 82bitri 263 . . . . . . . . . . 11 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
84 alral 2912 . . . . . . . . . . . 12 (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
85 nnre 10904 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
86 nnre 10904 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
87 ltnle 9996 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8885, 86, 87syl2anr 494 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8988imbi1d 330 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9089ralbidva 2968 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9184, 90syl5ibr 235 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9283, 91syl5bi 231 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9370, 92syl 17 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9493reximdva 3000 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9569, 94syld 46 . . . . . . 7 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
96 rexun 3755 . . . . . . 7 (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9795, 96syl6ib 240 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))))
98 simpll 786 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
99 simplr 788 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
100 simprl 790 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑦𝑧))
101 simprr 792 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
102 biid 250 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
1036, 98, 99, 100, 101, 102rpnnen2lem11 14792 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
104103rexlimdvaa 3014 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
105 simplr 788 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
106 simpll 786 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
107 simprl 790 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑧𝑦))
108 simprr 792 . . . . . . . . . . 11 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
109 bicom 211 . . . . . . . . . . . . 13 ((𝑛𝑧𝑛𝑦) ↔ (𝑛𝑦𝑛𝑧))
110109imbi2i 325 . . . . . . . . . . . 12 ((𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
111110ralbii 2963 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
112108, 111sylibr 223 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)))
113 eqcom 2617 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
1146, 105, 106, 107, 112, 113rpnnen2lem11 14792 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
115114rexlimdvaa 3014 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
116104, 115jaod 394 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
1172, 52, 116syl2an 493 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
11897, 117syld 46 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
119118necon4ad 2801 . . . 4 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) → 𝑦 = 𝑧))
120 fveq2 6103 . . . . . 6 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
121120fveq1d 6105 . . . . 5 (𝑦 = 𝑧 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑧)‘𝑘))
122121sumeq2sdv 14282 . . . 4 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
123119, 122impbid1 214 . . 3 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ 𝑦 = 𝑧))
12451, 123dom2 7884 . 2 ((0[,]1) ∈ V → 𝒫 ℕ ≼ (0[,]1))
1251, 124ax-mp 5 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cdom 7839  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  cuz 11563  [,]cicc 12049  seqcseq 12663  cexp 12722  cli 14063  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  rpnnen2  14794
  Copyright terms: Public domain W3C validator