Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   GIF version

Theorem rpnnen2lem10 14791
 Description: Lemma for rpnnen2 14794. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem10 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜑𝜓) → 𝜓)
2 rpnnen2.6 . . . 4 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
31, 2sylib 207 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
4 rpnnen2.2 . . . . . 6 (𝜑𝐴 ⊆ ℕ)
5 rpnnen2.4 . . . . . . 7 (𝜑𝑚 ∈ (𝐴𝐵))
6 eldifi 3694 . . . . . . . 8 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
7 ssel2 3563 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
86, 7sylan2 490 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
94, 5, 8syl2anc 691 . . . . . 6 (𝜑𝑚 ∈ ℕ)
10 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
1110rpnnen2lem8 14789 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
124, 9, 11syl2anc 691 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
13 1z 11284 . . . . . . . . . . . . . 14 1 ∈ ℤ
14 nnz 11276 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
15 elfzm11 12280 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1613, 14, 15sylancr 694 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑘 ∈ (1...(𝑚 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚)))
1716biimpa 500 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
189, 17sylan 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑚))
1918simp3d 1068 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → 𝑘 < 𝑚)
20 rpnnen2.5 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
21 elfznn 12241 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑚 − 1)) → 𝑘 ∈ ℕ)
22 breq1 4586 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 < 𝑚𝑘 < 𝑚))
23 eleq1 2676 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐴𝑘𝐴))
24 eleq1 2676 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛𝐵𝑘𝐵))
2523, 24bibi12d 334 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛𝐴𝑛𝐵) ↔ (𝑘𝐴𝑘𝐵)))
2622, 25imbi12d 333 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ↔ (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵))))
2726rspccva 3281 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2820, 21, 27syl2an 493 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘 < 𝑚 → (𝑘𝐴𝑘𝐵)))
2919, 28mpd 15 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → (𝑘𝐴𝑘𝐵))
3029ifbid 4058 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3110rpnnen2lem1 14782 . . . . . . . . 9 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
324, 21, 31syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
33 rpnnen2.3 . . . . . . . . 9 (𝜑𝐵 ⊆ ℕ)
3410rpnnen2lem1 14782 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3533, 21, 34syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3630, 32, 353eqtr4d 2654 . . . . . . 7 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐵)‘𝑘))
3736sumeq2dv 14281 . . . . . 6 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘))
3837oveq1d 6564 . . . . 5 (𝜑 → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
3912, 38eqtrd 2644 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4039adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)))
4110rpnnen2lem8 14789 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4233, 9, 41syl2anc 691 . . . 4 (𝜑 → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4342adantr 480 . . 3 ((𝜑𝜓) → Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
443, 40, 433eqtr3d 2652 . 2 ((𝜑𝜓) → (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
4510rpnnen2lem6 14787 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
464, 9, 45syl2anc 691 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
4710rpnnen2lem6 14787 . . . . 5 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
4833, 9, 47syl2anc 691 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
49 fzfid 12634 . . . . 5 (𝜑 → (1...(𝑚 − 1)) ∈ Fin)
5010rpnnen2lem2 14783 . . . . . . 7 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
5133, 50syl 17 . . . . . 6 (𝜑 → (𝐹𝐵):ℕ⟶ℝ)
52 ffvelrn 6265 . . . . . 6 (((𝐹𝐵):ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5351, 21, 52syl2an 493 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑚 − 1))) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
5449, 53fsumrecl 14312 . . . 4 (𝜑 → Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ)
55 readdcan 10089 . . . 4 ((Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ ∧ Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) ∈ ℝ) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5646, 48, 54, 55syl3anc 1318 . . 3 (𝜑 → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5756adantr 480 . 2 ((𝜑𝜓) → ((Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘)) = (Σ𝑘 ∈ (1...(𝑚 − 1))((𝐹𝐵)‘𝑘) + Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)) ↔ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
5844, 57mpbid 221 1 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  3c3 10948  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265 This theorem is referenced by:  rpnnen2lem11  14792
 Copyright terms: Public domain W3C validator